Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For expanding applications of spongy graphene aerogels (GAs) cost-effectively, we report a marriage of the two-step hydrothermal reduction and atmospheric drying method to fabricate a spongy CNC-graphene aerogel (CNG) with oil/water selectivity and tunable mechanical strength by a low-cost and straightforward approach. The reduced graphene oxide (rGO) with CNC by the ice-templated method can give rise to forming the hierarchical structure of hybrid GAs within the PUS network. Meanwhile, the fractured structure of PUS with a pre-compressive step arouses more versatility and durability, involving its selective and high-volume absorbability (up to 143%). The enhanced elastic modulus and more significant swelling effect than pure sponge materials give it a high potential for durable wastewater treatment.

Details

Title
Mechanically Tunable Spongy Graphene/Cellulose Nanocrystals Hybrid Aerogel by Atmospheric Drying and Its Adsorption Applications
Author
Luo, Yuanzheng  VIAFID ORCID Logo  ; Ye, Zhicheng; Liao, Shuai; Wang, Fengxin; Shao, Jianmei  VIAFID ORCID Logo 
First page
5961
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584441561
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.