Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fabricating polymeric scaffolds using cost-effective manufacturing processes is still challenging. Gas foaming techniques using supercritical carbon dioxide (scCO2) have attracted attention for producing synthetic polymer matrices; however, the high-pressure requirements are often a technological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a, offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature conditions and the use of low-cost equipment. Here, we report for the first time the use of Freon R134a for generating porous polymer matrices, specifically polylactide (PLA). PLA scaffolds processed with Freon R134a exhibited larger pore sizes, and total porosity, and appropriate mechanical properties compared with those achieved by scCO2 processing. PLGA scaffolds processed with Freon R134a were highly porous and showed a relatively fragile structure. Human mesenchymal stem cells (MSCs) attached to PLA scaffolds processed with Freon R134a, and their metabolic activity increased during culturing. In addition, MSCs displayed spread morphology on the PLA scaffolds processed with Freon R134a, with a well-organized actin cytoskeleton and a dense matrix of fibronectin fibrils. Functionalization of Freon R134a-processed PLA scaffolds with protein nanoparticles, used as bioactive factors, enhanced the scaffolds’ cytocompatibility. These findings indicate that gas foaming using compressed Freon R134a could represent a cost-effective and environmentally friendly fabrication technology to produce polymeric scaffolds for tissue engineering approaches.

Details

Title
Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering
Author
Aguado, María 1 ; Saldaña, Laura 2 ; Eduardo Pérez del Río 1 ; Guasch, Judith 3 ; Parera, Marc 1 ; Córdoba, Alba 1 ; Seras-Franzoso, Joaquín 4 ; Cano-Garrido, Olivia 5 ; Vázquez, Esther 4   VIAFID ORCID Logo  ; Villaverde, Antonio 4   VIAFID ORCID Logo  ; Veciana, Jaume 1   VIAFID ORCID Logo  ; Ratera, Imma 1   VIAFID ORCID Logo  ; Vilaboa, Nuria 2   VIAFID ORCID Logo  ; Ventosa, Nora 1   VIAFID ORCID Logo 

 Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; [email protected] (M.A.); [email protected] (E.P.d.R.); [email protected] (J.G.); [email protected] (M.P.); [email protected] (A.C.); [email protected] (J.V.); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; [email protected] (L.S.); [email protected] (J.S.-F.); [email protected] (O.C.-G.); [email protected] (E.V.); [email protected] (A.V.) 
 CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; [email protected] (L.S.); [email protected] (J.S.-F.); [email protected] (O.C.-G.); [email protected] (E.V.); [email protected] (A.V.); Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain 
 Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; [email protected] (M.A.); [email protected] (E.P.d.R.); [email protected] (J.G.); [email protected] (M.P.); [email protected] (A.C.); [email protected] (J.V.); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; [email protected] (L.S.); [email protected] (J.S.-F.); [email protected] (O.C.-G.); [email protected] (E.V.); [email protected] (A.V.); Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain 
 CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; [email protected] (L.S.); [email protected] (J.S.-F.); [email protected] (O.C.-G.); [email protected] (E.V.); [email protected] (A.V.); Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain 
 CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; [email protected] (L.S.); [email protected] (J.S.-F.); [email protected] (O.C.-G.); [email protected] (E.V.); [email protected] (A.V.); Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain 
First page
3453
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584508151
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.