Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Super-resolution (SR) technology has emerged as an effective tool for image analysis and interpretation. However, single hyperspectral (HS) image SR remains challenging, due to the high spectral dimensionality and lack of available high-resolution information of auxiliary sources. To fully exploit the spectral and spatial characteristics, in this paper, a novel single HS image SR approach is proposed based on a spatial correlation-regularized unmixing convolutional neural network (CNN). The proposed approach takes advantage of a CNN to explore the collaborative spatial and spectral information of an HS image and infer the high-resolution abundance maps, thereby reconstructing the anticipated high-resolution HS image via the linear spectral mixture model. Moreover, a dual-branch architecture network and spatial spread transform function are employed to characterize the spatial correlation between the high- and low-resolution HS images, aiming at promoting the fidelity of the super-resolved image. Experiments on three public remote sensing HS images demonstrate the feasibility and superiority in terms of spectral fidelity, compared with some state-of-the-art HS image super-resolution methods.

Details

Title
Hyperspectral Image Super-Resolution Based on Spatial Correlation-Regularized Unmixing Convolutional Neural Network
Author
Lu, Xiaochen 1   VIAFID ORCID Logo  ; Yang, Dezheng 1   VIAFID ORCID Logo  ; Zhang, Junping 2   VIAFID ORCID Logo  ; Jia, Fengde 1   VIAFID ORCID Logo 

 School of Information Science and Technology, Donghua University, Shanghai 201620, China; [email protected] (X.L.); [email protected] (D.Y.) 
 School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China; [email protected] 
First page
4074
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584519226
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.