Full text

Turn on search term navigation

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present paper is part of the research on the description of rings with a given property of the lattice of left (right) annihilators. The anti-isomorphism of lattices of left and right annihilators in any ring gives some kind of symmetry: the lattice of left annihilators is Boolean (complemented, distributive) if and only if the lattice of right annihilators is such. This allows us to restrict our investigations mainly to the left side. For a unital associative ring R, we prove that the lattice of left annihilators in R is Boolean if and only if R is a reduced ring. We also prove that the lattice of left annihilators of R being two-sided ideals is complemented if and only if this lattice is Boolean. The last statement, in turn, is known to be equivalent to the semiprimeness of R. On the other hand, for any complete lattice L, we construct a nilpotent ring whose lattice of left annihilators coincides with its sublattice of left annihilators being two-sided ideals and is isomorphic to L. This construction shows that the assumption of R being unital cannot be dropped in any of the above two results. Some additional results on rings with distributive or complemented lattices of left annihilators are obtained.

Details

Title
Rings with Boolean Lattices of One-Sided Annihilators
Author
Jastrzębska, Małgorzata  VIAFID ORCID Logo 
First page
1909
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584554188
Copyright
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.