It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Road network detection from very high resolution satellite and aerial images is highly important for diverse domains. Although an expert can label road pixels in a given image, this operation is prone to error and quite time consuming remembering that road maps must be updated regularly. Therefore, various computer vision based automated algorithms have been proposed in the last two decades. Nevertheless, due to the diversity of scenes, the field is still open for robust methods which might detect roads on different resolution images of different type of environments. In this study, we picked an earlier proposed road detection method which works based on traditional computer vision and probability theory algorithms. We improved it by further steps using reinforcement learning theory. With the help of the novel hybrid technique (traditional computer vision method combined with reinforcement learning based artificial intelligence), we achieved a solution that we call RLSnake. This new method can learn new image scenes and resolutions rapidly and can work reliably. We believe that the proposed RLSnake will be a significant step in the remote sensing field in order to develop solutions which might increase performance by combining the power of traditional and new techniques.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Robotics and Mechatronics, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The Netherlands; Robotics and Mechatronics, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The Netherlands
2 Smart Cities, School of Creative Technology, Saxion University of Applied Sciences, The Netherlands; Smart Cities, School of Creative Technology, Saxion University of Applied Sciences, The Netherlands
3 Electrical and Electronics Engineering, Faculty of Engineering, Marmara University, Turkey; Electrical and Electronics Engineering, Faculty of Engineering, Marmara University, Turkey