It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
New urban strategies encourage compact city and higher density urban development due to unprecedented city growth and rapid urbanisation. This has led to greater attention to multi-dimensional representation, modelling and analytics of urban settings among urban planners, decision makers, and researchers. Nowadays, urban planning and urban design practitioners and scholars leverage the advancements in computer technology and multi-dimensional visualisation in examining the development scenarios from physical, environmental, social, and economic aspects. However, many urban planners still rely on two-dimensional (2D) land information and urban designers use three-dimensional (3D) graphic-based engines to asses a proposed building or assess the impact of changing development regulations. This limits the decision makers from a holistic approach through integrating the urban systems with other application domains such as transport, environmental, and disaster management to ensure the liveability of cities. This paper describes the design, and development of a multi-dimensional and spatially enabled platform to support liveability planning in Singapore. A Quantitative Urban Environment Simulation Tool (QUEST), developed in Singapore, leveraged 3D mapping data captured under the Singapore Land Authority’s (SLA) 3D National Topographic Mapping project. SLA's 3D data including Building Information Model (BIM), CityGML, and other geospatial data (building footprints and land use) were processed and adapted as a service for a series of urban analytics. The paper concludes that the prerequisites for any urban environmental simulation system to be integrated with other application domains are 3D mapping data and a digital urban model, which must be spatially accurate and based on open data standards.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Centre for Spatial Data Infrastructures and Land Administration, Department of Infrastructure Engineering, The University of Melbourle, 3010 VIC, Parkville, Australia; Centre for Spatial Data Infrastructures and Land Administration, Department of Infrastructure Engineering, The University of Melbourle, 3010 VIC, Parkville, Australia
2 Singapore Environment Institute, National Environment Agency, 40 Scotts Road, #13-00 Environment Building, 228231, Singapore; Singapore Environment Institute, National Environment Agency, 40 Scotts Road, #13-00 Environment Building, 228231, Singapore
3 Land Survey Division, Singapore Land Authority, 55 Newton Road, #12-01, 307987, Singapore; Land Survey Division, Singapore Land Authority, 55 Newton Road, #12-01, 307987, Singapore