It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The temperature rise in urban areas has become a major environmental concern. Hence, the study of Land surface temperature (LST) in urban areas is important to understand the behaviour of different land covers on temperature. Relation of LST with different indices is required to study LST in urban areas using satellite data. The present study focuses on the relation of LST with the selected indices based on different land cover using Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) data in Varanasi, India. A regression analysis was done between LST and Normalized Difference Vegetation index (NDVI), Normalized Difference Soil Index (NDSI), Normalized Difference Built-up Index (NDBI) and Normalized Difference Water Index (NDWI). The non-linear relations of LST with NDVI and NDWI were observed, whereas NDBI and NDSI were found to show positive linear relation with LST. The correlation of LST with NDSI was found better than NDBI. Further analysis was done by choosing 25 pure pixels from each land cover of water, vegetation, bare soil and urban areas to determine the behaviour of indices on LST for each land cover. The investigation shows that NDSI and NDBI can be effectively used for study of LST in urban areas. However, NDBI can explain urban LST in the better way for the regions without water body.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Physics, Indian Institute of Technology (BHU), Varanasi, India; Department of Physics, Indian Institute of Technology (BHU), Varanasi, India