It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Learning efficient image representations is at the core of the classification task of remote sensing imagery. The existing methods for solving image classification task, based on either feature coding approaches extracted from convolution neural networks(CNNs) or training new CNNs, can only generate image features with limited representative ability, which essentially prevents them from achieving better performance. In this paper, we investigate how to transfer features from these successfully pre-trained CNNs for classification. We propose a scenario for generating image features via cascading features extracted from different CNNs. First, pre-trained CNNs, like CaffeNet, VGG-S and VGG-F, are used as feature extractor since their different structures help extract richer information of images. Then the fully-connected layers of the pre-trained CNNs are fine-tuned with UC Merced land use dataset. Finally, the image features generating from cascading the outputs of three networks above, are fed into multi-class Optimal Margin Distribution Machine (mcODM) to obtain the final classification results. Extensive experiments on public land use classification dataset demonstrates that the image features obtained by the proposed scenario can result in remarkable performance and improve the state-of-the-art by a significant margin. The results reveal that the features from pre-trained CNNs generalize well to land use dataset and are more expressive than features from single CNN.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 China University of Geoscience, Wuhan, China; China University of Geoscience, Wuhan, China
2 Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Science Quanzhou, China; Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Science Quanzhou, China