It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous behaviour, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. To perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, machine-learning-based approaches achieved superior performance for all tasks. The discussion of the challenge results provides practical advice for users and a benchmark for developers.
Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics but often difficult to characterize. Here the authors compare approaches for single trajectory analysis through an open competition, showing that machine learning methods outperform classical approaches.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Volpe Giovanni 2
; Garcia-March, Miguel Angel 3 ; Aghion Erez 4 ; Argun Aykut 2 ; Hong, Chang Beom 5 ; Bland, Tom 6 ; Bo, Stefano 4
; Alberto, Conejero J 3 ; Firbas Nicolás 3
; Garibo i Orts Òscar 3
; Gentili Alessia 7
; Huang Zihan 8
; Jae-Hyung, Jeon 5
; Kabbech Hélène 9
; Kim Yeongjin 5 ; Kowalek Patrycja 10
; Krapf Diego 11
; Loch-Olszewska Hanna 10
; Lomholt, Michael A 12 ; Masson Jean-Baptiste 13
; Meyer, Philipp G 4
; Park Seongyu 5
; Requena Borja 1
; Smal Ihor 9 ; Song Taegeun 14
; Szwabiński Janusz 10 ; Thapa Samudrajit 15
; Verdier Hippolyte 16
; Volpe Giorgio 7
; Widera Artur 17
; Lewenstein Maciej 18
; Metzler Ralf 19
; Manzo, Carlo 20
1 The Barcelona Institute of Science and Technology, ICFO – Institut de Ciències Fotòniques, Castelldefels (Barcelona), Spain (GRID:grid.473715.3) (ISNI:0000 0004 6475 7299)
2 University of Gothenburg, Department of Physics, Gothenburg, Sweden (GRID:grid.8761.8) (ISNI:0000 0000 9919 9582)
3 Universitat Politècnica de València, Instituto Universitario de Matemática Pura y Aplicada, Valencia, Spain (GRID:grid.157927.f) (ISNI:0000 0004 1770 5832)
4 Max Planck Institute for the Physics of Complex Systems, Dresden, Germany (GRID:grid.419560.f) (ISNI:0000 0001 2154 3117)
5 Pohang University of Science and Technology, Department of Physics, Pohang, Korea (GRID:grid.49100.3c) (ISNI:0000 0001 0742 4007)
6 The Francis Crick Institute, London, UK (GRID:grid.451388.3) (ISNI:0000 0004 1795 1830)
7 University College London, Department of Chemistry, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201)
8 Hunan University, School of Physics and Electronics, Changsha, China (GRID:grid.67293.39)
9 Erasmus University Medical Center, Department of Cell Biology, Rotterdam, the Netherlands (GRID:grid.5645.2) (ISNI:000000040459992X)
10 Wrocław University of Science and Technology, Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław, Poland (GRID:grid.7005.2) (ISNI:0000 0000 9805 3178)
11 Colorado State University, Department of Electrical and Computer Engineering, Fort Collins, USA (GRID:grid.47894.36) (ISNI:0000 0004 1936 8083)
12 University of Southern Denmark, PhyLife, Department of Physics, Chemistry and Pharmacy, Odense M, Denmark (GRID:grid.10825.3e) (ISNI:0000 0001 0728 0170)
13 Institut Pasteur, Université de Paris, USR 3756 (C3BI/DBC) & Neuroscience department CNRS UMR 3751, Decision and Bayesian Computation lab, Paris, France (GRID:grid.10825.3e)
14 Pohang University of Science and Technology, Department of Physics, Pohang, Korea (GRID:grid.49100.3c) (ISNI:0000 0001 0742 4007); Korea Institute for Advanced Study, Center for AI and Natural Sciences, Seoul, Korea (GRID:grid.249961.1) (ISNI:0000 0004 0610 5612); Kongju National University, Department of Data Information and Physics, Kongju, Korea (GRID:grid.411118.c) (ISNI:0000 0004 0647 1065)
15 University of Potsdam, Institute of Physics & Astronomy, Potsdam-Golm, Germany (GRID:grid.11348.3f) (ISNI:0000 0001 0942 1117); Tel Aviv University, Sackler Center for Computational Molecular and Materials Science, Tel Aviv, Israel (GRID:grid.12136.37) (ISNI:0000 0004 1937 0546); Tel Aviv University, School of Mechanical Engineering, Tel Aviv, Israel (GRID:grid.12136.37) (ISNI:0000 0004 1937 0546)
16 Institut Pasteur, Université de Paris, USR 3756 (C3BI/DBC) & Neuroscience department CNRS UMR 3751, Decision and Bayesian Computation lab, Paris, France (GRID:grid.12136.37)
17 Technische Universität Kaiserslautern, Department of Physics and Research Center OPTIMAS, Kaiserslautern, Germany (GRID:grid.7645.0) (ISNI:0000 0001 2155 0333)
18 The Barcelona Institute of Science and Technology, ICFO – Institut de Ciències Fotòniques, Castelldefels (Barcelona), Spain (GRID:grid.473715.3) (ISNI:0000 0004 6475 7299); ICREA, Barcelona, Spain (GRID:grid.425902.8) (ISNI:0000 0000 9601 989X)
19 University of Potsdam, Institute of Physics & Astronomy, Potsdam-Golm, Germany (GRID:grid.11348.3f) (ISNI:0000 0001 0942 1117)
20 The Barcelona Institute of Science and Technology, ICFO – Institut de Ciències Fotòniques, Castelldefels (Barcelona), Spain (GRID:grid.473715.3) (ISNI:0000 0004 6475 7299); Universitat de Vic – Universitat Central de Catalunya (UVic-UCC), Facultat de Ciències i Tecnologia, Vic, Spain (GRID:grid.440820.a)




