It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The hunger hormone ghrelin activates the ghrelin receptor GHSR to stimulate food intake and growth hormone secretion and regulate reward signaling. Acylation of ghrelin at Ser3 is required for its agonistic action on GHSR. Synthetic agonists of GHSR are under clinical evaluation for disorders related to appetite and growth hormone dysregulation. Here, we report high-resolution cryo-EM structures of the GHSR-Gi signaling complex with ghrelin and the non-peptide agonist ibutamoren as an investigational new drug. Our structures together with mutagenesis data reveal the molecular basis for the binding of ghrelin and ibutamoren. Structural comparison suggests a salt bridge and an aromatic cluster near the agonist-binding pocket as important structural motifs in receptor activation. Notable structural variations of the Gi and GHSR coupling are observed in our cryo-EM analysis. Our results provide a framework for understanding GHSR signaling and developing new GHSR agonist drugs.
Ghrelin is a central orexigenic peptide hormone in human energy homeostasis that is also known as ‘hunger hormone’ and signals through its GPCR, GHSR. Here, the authors present the cryo-EM structures of the human GHSR-Gi signaling complex with bound ghrelin and the synthetic non-peptide agonist ibutamoren that are of interest for drug design.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 University of Pittsburgh, Department of Pharmacology and Chemical Biology, School of Medicine, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000)
2 St. Jude Children’s Research Hospital, Department of Structural Biology, Memphis, USA (GRID:grid.240871.8) (ISNI:0000 0001 0224 711X)
3 Université de Montpellier, ENSCM, Institut des Biomolécules Max Mousseron, CNRS, Montpellier, France (GRID:grid.121334.6) (ISNI:0000 0001 2097 0141)