Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Building an effective Machine Learning (ML) model for a data set is a difficult task involving various steps. One of the most important steps is to compare a substantial amount of generated ML models to find the optimal one for deployment. It is challenging to compare such models with a dynamic number of features. Comparison is more than only finding differences of ML model performance, as users are also interested in the relations between features and model performance such as feature importance for ML explanations. This paper proposes RadialNet Chart, a novel visualisation approach, to compare ML models trained with a different number of features of a given data set while revealing implicit dependent relations. In RadialNet Chart, ML models and features are represented by lines and arcs, respectively. These lines are generated effectively using a recursive function. The dependence of ML models with a dynamic number of features is encoded into the structure of visualisation, where ML models and their dependent features are directly revealed from related line connections. ML model performance information is encoded with colour and line width in RadialNet Chart. Taken together with the structure of visualisation, feature importance can be directly discerned in RadialNet Chart for ML explanations. Compared with other commonly used visualisation approaches, RadialNet Chart can help to simplify the ML model comparison process with different benefits such as the following: more efficient in terms of helping users to focus their attention to find visual elements of interest and easier to compare ML performance to find optimal ML model and discern important features visually and directly instead of through complex algorithmic calculations for ML explanations.

Details

Title
Facilitating Machine Learning Model Comparison and Explanation through a Radial Visualisation
Author
Zhou, Jianlong 1   VIAFID ORCID Logo  ; Huang, Weidong 2   VIAFID ORCID Logo  ; Chen, Fang 1   VIAFID ORCID Logo 

 Data Science Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia; [email protected] 
 TD School, University of Technology Sydney, Ultimo, NSW 2007, Australia 
First page
7049
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596027475
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.