Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related death worldwide. Chronic liver inflammation due to hepatitis virus infection and other major effectors is a major risk factor of HCC. Indoleamine 2,3-dioxygenase 1 (IDO1), a heme enzyme highly expressed upon stimulation with proinflammatory cytokines such as interferon-γ (IFN-γ), is activated to modulate the tumor microenvironment and potentially crucial in the development of certain cancer types. Earlier studies have majorly reported an immunomodulatory function of IDO1. However, the specific role of IDO1 in cancer cells, particularly HCC, remains to be clarified. Analysis of The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA LIHC) dataset in the current study revealed a significant correlation between IDO1 expression and HCC. We further established inducible IDO1-expressing cell models by coupling lentivirus-mediated knockdown and IFN-γ induction of IDO1 in normal and HCC cells. In functional assays, proliferation and motility-related functions of HCC cells were compromised upon suppression of IDO1, which may partially be rescued by its enzymatic product, kynurenine (KYN), while normal hepatocytes were not affected. Aryl hydrocarbon receptor (AhR), a reported endogenous KYN receptor, is suggested to participate in tumorigenesis. In mechanistic studies, IDO1 activation promoted both AhR and β-catenin activity and nuclear translocation. Immunofluorescence staining and co-immunoprecipitation assays further disclosed interactions between AhR and β-catenin. In addition, we identified a Src-PTEN-PI3K/Akt-GSK-3β axis involved in β-catenin stabilization and activation following IDO1-mediated AhR activation. IDO1-induced AhR and β-catenin modulated the expression of proliferation- and EMT-related genes to facilitate growth and metastasis of HCC cells. Our collective findings provide a mechanistic basis for the design of more efficacious IDO1-targeted therapy for HCC.

Details

Title
Aberrant Upregulation of Indoleamine 2,3-Dioxygenase 1 Promotes Proliferation and Metastasis of Hepatocellular Carcinoma Cells via Coordinated Activation of AhR and β-Catenin Signaling
Author
Chen, Chih-Ta 1   VIAFID ORCID Logo  ; Pei-Hua, Wu 1 ; Hu, Chia-Chi 1 ; Hsiao-Ching Nien 2 ; Jin-Town, Wang 3 ; Jin-Chuan Sheu 4 ; Lu-Ping, Chow 1   VIAFID ORCID Logo 

 Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd, Taipei 100, Taiwan; [email protected] (C.-T.C.); [email protected] (P.-H.W.); [email protected] (C.-C.H.) 
 Department of Family Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; [email protected]; Liver Disease Prevention and Treatment Research Foundation, Taipei 100, Taiwan; [email protected] 
 Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; [email protected]; Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan 
 Liver Disease Prevention and Treatment Research Foundation, Taipei 100, Taiwan; [email protected]; Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan 
First page
11661
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596037906
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.