Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

“Going concern” is a professional term in the domain of accounting and auditing. The issuance of appropriate audit opinions by certified public accountants (CPAs) and auditors is critical to companies as a going concern, as misjudgment and/or failure to identify the probability of bankruptcy can cause heavy losses to stakeholders and affect corporate sustainability. In the era of artificial intelligence (AI), deep learning algorithms are widely used by practitioners, and academic research is also gradually embarking on projects in various domains. However, the use of deep learning algorithms in the prediction of going concern remains limited. In contrast to those in the literature, this study uses long short-term memory (LSTM) and gated recurrent unit (GRU) for learning and training, in order to construct effective and highly accurate going-concern prediction models. The sample pool consists of the Taiwan Stock Exchange Corporation (TWSE) and the Taipei Exchange (TPEx) listed companies in 2004–2019, including 86 companies with going concern doubt and 172 companies without going concern doubt. In other words, 258 companies in total are sampled. There are 20 research variables, comprising 16 financial variables and 4 non-financial variables. The results are based on performance indicators such as accuracy, precision, recall/sensitivity, specificity, F1-scores, and Type I and Type II error rates, and both the LSTM and GRU models perform well. As far as accuracy is concerned, the LSTM model reports 96.15% accuracy while GRU shows 94.23% accuracy.

Details

Title
Artificial Intelligence in Corporate Sustainability: Using LSTM and GRU for Going Concern Prediction
Author
Der-Jang, Chi 1 ; Chien-Chou, Chu 2 

 Department of Accounting, Chinese Culture University, Taipei City 11114, Taiwan; [email protected] 
 Graduate Institute of International Business Administration, Chinese Culture University, Taipei City 11114, Taiwan 
First page
11631
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596061772
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.