Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The tourism industry hit severely by COVID-19 faces the challenge of developing effective market recovery strategies. Nonetheless, the existing literature is still limited regarding the dynamic evolution process and management practice. Hence, this study chose several famous spots in the Yunnan Province of China as the focus for a case study and utilized an agent-based simulation method for the decision-making process of tourists’ destination selection and the dynamic recovery process of the destinations under different price and information strategies. The study found that the recovery effects of information strategies are positive, negative, or have no effect in different destinations. In contrast, price strategies can significantly stimulate an increase in the market share of destinations. When price strategy and information strategy are applied simultaneously, the interaction effects are inconsistent in different destinations. The findings contribute to the prediction of the recovery effect of strategies, can reduce trial and error costs, and can improve the scientific understanding of tourism market recovery.

Details

Title
Agent-Based Modeling and Simulation of Tourism Market Recovery Strategy after COVID-19 in Yunnan, China
Author
Luo, Yumei 1 ; Li, Yuwei 1 ; Wang, Guiping 1 ; Ye, Qiongwei 2   VIAFID ORCID Logo 

 School of Business and Tourism Management, Yunnan University, Kunming 650500, China; [email protected] (Y.L.); [email protected] (Y.L.); [email protected] (G.W.) 
 Business School, Yunnan University of Finance and Economics, Kunming 650500, China 
First page
11750
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596062641
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.