Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Electroencephalography (EEG)-derived event-related potentials (ERPs) provide information about a variety of brain functions, but often suffer from low inherent signal-to-noise ratio (SNR). To overcome the low SNR, techniques that pool data from multiple sensors have been applied. However, such pooling implicitly assumes that the SNR among sensors is equal, which is not necessarily valid. This study presents a novel approach for signal pooling that accounts for differential SNR among sensors. Methods: The new technique involves pooling together signals from multiple EEG channels weighted by their respective SNRs relative to the overall SNR of all channels. We compared ERP responses derived using this new technique with those derived using both individual channels as well as traditional averaged-based channel pooling. The outcomes were evaluated in both simulated data and real data from healthy adult volunteers (n = 37). Responses corresponding to a range of ERP components indexing auditory sensation (N100), attention (P300) and language processing (N400) were evaluated. Results: Simulation results demonstrate that, compared to traditional pooling technique, the new SNR-weighted channel pooling technique improved ERP response effect size in cases of unequal noise among channels (p’s < 0.001). Similarly, results from real-world experimental data showed that the new technique resulted in significantly greater ERP effect sizes compared to either traditional pooling or individual channel approach for all three ERP components (p’s < 0.001). Furthermore, the new channel pooling approach also resulted in larger ERP signal amplitudes as well as greater differences among experimental conditions (p’s < 0.001). Conclusion: These results suggest that the new technique improves the capture of ERP responses relative to traditional techniques. As such, SNR-weighted channel pooling can further enable widespread applications of ERP techniques, especially those that require rapid assessments in noisy out-of-laboratory environments.

Details

Title
Event Related Potential Signal Capture Can Be Enhanced through Dynamic SNR-Weighted Channel Pooling
Author
Sujoy Ghosh Hajra 1 ; Liu, Careesa C 2   VIAFID ORCID Logo  ; Fickling, Shaun D 3 ; Pawlowski, Gabriela M 4 ; Song, Xiaowei 5 ; Ryan C N D’Arcy 6 

 Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; [email protected] (S.G.H.); [email protected] (C.C.L.); [email protected] (S.D.F.); Flight Research Laboratory, Aerospace Research Centre, National Research Council Canada, Ottawa, ON K1V 1J8, Canada 
 Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; [email protected] (S.G.H.); [email protected] (C.C.L.); [email protected] (S.D.F.); Myant Inc., Toronto, ON M9W 1B6, Canada 
 Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; [email protected] (S.G.H.); [email protected] (C.C.L.); [email protected] (S.D.F.); HealthTech Connex Inc., Surrey, BC V3V 0C6, Canada; [email protected] 
 HealthTech Connex Inc., Surrey, BC V3V 0C6, Canada; [email protected]; Faculty of Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; [email protected] 
 Faculty of Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; [email protected]; Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health Authority, Surrey, BC V3T 0H1, Canada 
 Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; [email protected] (S.G.H.); [email protected] (C.C.L.); [email protected] (S.D.F.); HealthTech Connex Inc., Surrey, BC V3V 0C6, Canada; [email protected]; Faculty of Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; [email protected]; Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health Authority, Surrey, BC V3T 0H1, Canada; DM Centre for Brain Health (Radiology), University of British Columbia, Vancouver, BC V6T 1Z3, Canada 
First page
7258
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596065744
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.