Abstract

Introducing regions of looser atomic packing in bulk metallic glasses (BMGs) was reported to facilitate plastic deformation, rendering BMGs more ductile at room temperature. Here, we present a different alloy design approach, namely, doping the nonmetallic elements to form densely packed motifs. The enhanced structural fluctuations in Ti-, Zr- and Cu-based BMG systems leads to improved strength and renders these solutes’ atomic neighborhoods more prone to plastic deformation at an increased critical stress. As a result, we simultaneously increased the compressive plasticity (from ∼8% to unfractured), strength (from ∼1725 to 1925 MPa) and toughness (from 87 ± 10 to 165 ± 15 MPa√m), as exemplarily demonstrated for the Zr20Cu20Hf20Ti20Ni20 BMG. Our study advances the understanding of the atomic-scale origin of structure-property relationships in amorphous solids and provides a new strategy for ductilizing BMG without sacrificing strength.

Common wisdom to improve ductility of bulk metallic glasses (BMGs) is to introduce local loose packing regions at the expense of strength. Here the authors enhance structural fluctuations of BMGs by introducing dense local packing regions, resulting in simultaneous increase of ductility and strength.

Details

Title
Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing
Author
Wu, Yuan 1 ; Cao, Di 1   VIAFID ORCID Logo  ; Yao Yilin 1 ; Zhang, Guosheng 1 ; Wang, Jinyue 1 ; Liu Leqing 1 ; Li Fengshou 1 ; Fan Huiyang 1 ; Liu Xiongjun 1   VIAFID ORCID Logo  ; Wang, Hui 1   VIAFID ORCID Logo  ; Wang, Xianzhen 2 ; Zhu Huihui 1 ; Jiang Suihe 1 ; Kontis Paraskevas 3   VIAFID ORCID Logo  ; Raabe Dierk 3   VIAFID ORCID Logo  ; Gault Baptiste 4   VIAFID ORCID Logo  ; Lu, Zhaoping 1   VIAFID ORCID Logo 

 University of Science and Technology Beijing, Beijing advanced innovation center for materials genome engineering, State Key Laboratory for Advanced Metals and Materials, Beijing, China (GRID:grid.69775.3a) (ISNI:0000 0004 0369 0705) 
 University of Science and Technology Beijing, Institute for Advanced Materials and Technology, Beijing, China (GRID:grid.69775.3a) (ISNI:0000 0004 0369 0705) 
 Max-Planck-Institut für Eisenforschung GmbH, Department of Microstructure Physics and Alloy Design, Düsseldorf, Germany (GRID:grid.13829.31) (ISNI:0000 0004 0491 378X) 
 Max-Planck-Institut für Eisenforschung GmbH, Department of Microstructure Physics and Alloy Design, Düsseldorf, Germany (GRID:grid.13829.31) (ISNI:0000 0004 0491 378X); Imperial College London, Kensington, Department of Materials, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596811192
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.