It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Optoelectronics is an active area of research and, for few decades, development of different semiconducting materials with a wide emission window has attracted researchers. Organic light emitting diodes (OLEDs) are primarily utilized in displays and light sources that greatly contribute towards the conservation of energy and do not need a backlight for displays. Development in device efficiency, lifetime and stability is now a major concern in this particular application, and designing efficient material for OLEDs has been an active field of research for decades. Metal-organic compounds possess different optical and electronic properties due to metal and organic ligand interactions which are primarily used in OLEDs. This review is mainly focused on the Schiff bases and their metal chelates as a pure emitting layer or as a dopant material for the fabrication of R/G/B/white emitting devices. Moreover, future prospects to explore further to advance research in the OLED arena are also discussed. Graphic Abstract
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer