It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Dynamic problems of a nanocircular plate-cavity system are investigated using molecular dynamics (MD) method. A nonlinear plate model considering gas action is developed. The results of the MD simulation show that the helium atoms adsorb on the wall of the cavity at low temperature, resulting in a negative deflection of the molybdenum disulfide (MoS2) plate. As the temperature increases, the pressure in the cavity increases, leading to a gradual rise in the deflection of the plate. A nonlinear phenomenon of stiffness hardening is shown with increasing temperature. The nonlinear plate model can give a relatively good prediction compared with the results of MD simulations. The natural frequency of the plate is affected by temperature and the presence of gas in the cavity. The phenomenon of stiffness hardening and softening can be well simulated by the nonlinear plate model and MD method. The present study provides a reference for vibration experiments of two-dimensional nanostructures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer