Abstract
Background
Combination antiretroviral treatment (cART) cannot eradicate HIV-1 from the body due to the establishment of persisting viral reservoirs which are not affected by therapy and reinitiate new rounds of HIV-1 replication after treatment interruption. These HIV-1 reservoirs mainly comprise long-lived resting memory CD4+ T cells and are established early after infection. There is a high variation in the size of these viral reservoirs among virally suppressed individuals. Identification of host factors that contribute to or can explain this observed variation could open avenues for new HIV-1 treatment strategies.
Methods
In this study, we conducted a genome-wide quantitative trait locus (QTL) analysis to probe functionally relevant genetic variants linked to levels of cell-associated (CA) HIV-1 DNA, CA HIV-1 RNA, and RNA:DNA ratio in CD4+ T cells isolated from blood from a cohort of 207 (Caucasian) people living with HIV-1 (PLHIV) on long-term suppressive antiretroviral treatment (median = 6.6 years). CA HIV-1 DNA and CA HIV-1 RNA levels were measured with corresponding droplet digital PCR (ddPCR) assays, and genotype information of 522,455 single-nucleotide variants was retrieved via the Infinium Global Screening array platform.
Results
The analysis resulted in one significant association with CA HIV-1 DNA (rs2613996, P < 5 × 10−8) and two suggestive associations with RNA:DNA ratio (rs7113204 and rs7817589, P < 5 × 10−7). Then, we prioritized PTDSS2, IRF7, RNH1, and DEAF1 as potential HIV-1 reservoir modifiers and validated that higher expressions of IRF7 and RNH1 were accompanied by rs7113204-G. Moreover, RNA:DNA ratio, indicating relative HIV-1 transcription activity, was lower in PLHIV carrying this variant.
Conclusions
The presented data suggests that the amount of CA HIV-1 DNA and RNA:DNA ratio can be influenced through PTDSS2, RNH1, and IRF7 that were anchored by our genome-wide association analysis. Further, these observations reveal potential host genetic factors affecting the size and transcriptional activity of HIV-1 reservoirs and could indicate new targets for HIV-1 therapeutic strategies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





