Content area

Abstract

The Multilevel Monte Carlo (MLMC) method has proven to be an effective variance-reduction statistical method for Uncertainty Quantification (UQ) in Partial Differential Equation (PDE) models, combining model computations at different levels to create an accurate estimate. Still, the computational complexity of the resulting method is extremely high, particularly for 3D models, which requires advanced algorithms for the efficient exploitation of High Performance Computing (HPC). In this article we present a new implementation of the MLMC in massively parallel computer architectures, exploiting parallelism within and between each level of the hierarchy. The numerical approximation of the PDE is performed using the finite element method but the algorithm is quite general and could be applied to other discretization methods as well, although the focus is on parallel sampling. The two key ingredients of an efficient parallel implementation are a good processor partition scheme together with a good scheduling algorithm to assign work to different processors. We introduce a multiple partition of the set of processors that permits the simultaneous execution of different levels and we develop a dynamic scheduling algorithm to exploit it. The problem of finding the optimal scheduling of distributed tasks in a parallel computer is an NP-complete problem. We propose and analyze a new greedy scheduling algorithm to assign samples and we show that it is a 2-approximation, which is the best that may be expected under general assumptions. On top of this result we design a distributed memory implementation using the Message Passing Interface (MPI) standard. Finally we present a set of numerical experiments illustrating its scalability properties.

Details

1009240
Title
A Massively Parallel Implementation of Multilevel Monte Carlo for Finite Element Models
Publication title
arXiv.org; Ithaca
Publication year
2023
Publication date
May 23, 2023
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2023-05-24
Milestone dates
2021-11-23 (Submission v1); 2023-05-23 (Submission v2)
Publication history
 
 
   First posting date
24 May 2023
ProQuest document ID
2601723931
Document URL
https://www.proquest.com/working-papers/massively-parallel-implementation-multilevel/docview/2601723931/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-24
Database
ProQuest One Academic