Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Physiological responses to heat stress are affected by breed. Therefore, crossbreeding genetically improved lines with tropically adapted breeds of pigs may be a strategy to attenuate the impact of high ambient temperatures on pig production. Although some studies have evaluated thermotolerance in tropically adapted breeds, it is not yet clear to which extent improved tolerance to heat stress is a consequence of a greater ability to equilibrate thermogenesis and thermolysis, or if it is a consequence of decreased growth performance. Although there was no interaction for performance, thermoregulatory responses, and blood parameters, our results evidenced that ambient temperature effects on carcass parameters were modulated by the pigs’ genotype. Because protein deposition significantly decreased in response to high ambient temperature in commercial pigs, and was not affected by ambient temperature in Piau crossbred pigs, our study suggests increased thermotolerance of Piau crossbred pigs.

Abstract

The study aimed at evaluating the effects of high ambient temperature (HT: 30 °C) on the thermoregulatory responses and performance of commercial and Piau crossbred (Brazilian Piau breed sires × commercial genotype dams) growing pigs. Commercial and Piau crossbred pigs were reared under thermoneutral (TN: 22 °C) or HT conditions during a 14-day experimental period. Feeding (daily) and animals (beginning and end) were weighted to obtain performance parameters. Skin and rectal temperatures, respiratory rate, and blood parameters were also measured. At the end of the trial (day 15), the animal’s backfat thickness (BF) and loin eye area (LEA) were measured. No interaction (p > 0.05) between the genetic group and ambient temperature was observed for any performance trait. Irrespective of ambient temperature, Piau crossbred pigs had a similar feed intake (ADFI, 2615 g/day, on average; p > 0.05), lower daily weight gain (ADG, −234 g/day; p < 0.01), and a higher feed conversion ratio (FCR, +0.675 g/g; p < 0.01). There was interaction (p = 0.01) between genotype and ambient temperature for the LEA that decreased significantly in response to HT in commercial pigs (−6.88 cm2) and did not differ in response to ambient temperature in Piau crossbred pigs (29.14 cm2, on average; p > 0.05). Piau crossbred pigs had greater BF (+7.2 mm; p < 0.01) than commercial pigs. Regardless of the genetic group, exposure of pigs to HT resulted in decreased ADFI (−372 g/day; p < 0.01), ADG (−185 g/day; p < 0.01), and a higher FCR (+0.48 g/g; p = 0.01). Ambient temperature did not affect lipid deposition. Pigs at HT had an increased respiratory rate (+38 bpm; p < 0.01) and a long-lasting increase in skin and rectal temperatures compared to TN pigs. Total concentrations of triiodothyronine (T3) and thyroxine (T4) were not affected by ambient temperature in commercial pigs, whereas Piau crossbred pigs kept at 30 °C had a transient decrease in both hormones at day 2 (p < 0.01). Serum cortisol concentrations were not affected (p > 0.05) by genotype nor ambient temperature. In summary, Piau crossbred pigs had lower efficiency using nutrients for growth in association with increased lipid deposition when compared to commercial pigs. In response to HT, commercial pigs had a decreased LEA, whereas no effect was observed for Piau crossbred pigs. Apart from that, commercial and Piau crossbred pigs had a similar magnitude of thermoregulatory responses activation in response to HT, evidencing their innate survival-oriented function.

Details

Title
Effects of Ambient Temperature on the Performance and Thermoregulatory Responses of Commercial and Crossbred (Brazilian Piau Purebred Sires × Commercial Dams) Growing-Finishing Pigs
Author
Moreira, Vinícius Eduardo 1   VIAFID ORCID Logo  ; Veroneze, Renata 2 ; Alípio dos Reis Teixeira 3 ; Lorena Duarte Campos 2   VIAFID ORCID Logo  ; Lais Fernanda Lopes Lino 2 ; Gabryele Almeida Santos 2 ; Nunes Silva, Bruno Alexander 4   VIAFID ORCID Logo  ; Paulo Henrique Reis Furtado Campos 2   VIAFID ORCID Logo 

 Animal Science Postgraduate Program, Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; [email protected] (V.E.M.); [email protected] (A.d.R.T.); Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; [email protected] (R.V.); [email protected] (L.D.C.); [email protected] (L.F.L.L.); [email protected] (G.A.S.) 
 Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; [email protected] (R.V.); [email protected] (L.D.C.); [email protected] (L.F.L.L.); [email protected] (G.A.S.) 
 Animal Science Postgraduate Program, Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; [email protected] (V.E.M.); [email protected] (A.d.R.T.) 
 Institute of Agricultural Sciences, Department of Animal Science, Universidade Federal de Minas Gerais, Montes Claros 39404-547, MG, Brazil; [email protected] 
First page
3303
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2601986447
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.