Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Variation exists in muscle-related traits, such as muscle growth and meat quality, between obese and lean pigs. In this study, the transcriptome profiles of skeletal muscle between Beijing Blackand Yorkshire pigs were characterized to explore the molecular mechanism underlying skeletal muscle-relatedtraits. Gene Ontology (GO) and KEGG pathway enrichment analyses showed that differentially expressed mRNAs, lncRNAs, and circRNAs involved in skeletal muscle development and fatty acid metabolism played a key role in the determination of muscle-related traits between different pig breeds. These results provide candidate genes responsible for muscle phenotypic variation and are valuable for pig breeding.

Abstract

RNA-Seq technology is widely used to analyze global changes in the transcriptome and investigate the influence on relevant phenotypic traits. Beijing Black pigs show differences in growth rate and meat quality compared to western pig breeds. However, the molecular mechanisms responsible for such phenotypic differences remain unknown. In this study, longissimus dorsi muscles from Beijing Black and Yorkshire pigs were used to construct RNA libraries and perform RNA-seq. Significantly different expressions were observed in 1051 mRNAs, 322 lncRNAs, and 82 circRNAs. GO and KEGG pathway annotation showed that differentially expressed mRNAs participated in skeletal muscle development and fatty acid metabolism, which determined the muscle-related traits. To explore the regulatory role of lncRNAs, the cis and trans-target genes were predicted and these lncRNAswere involved in the biological processes related to skeletal muscle development and fatty acid metabolismvia their target genes. CircRNAs play a ceRNA role by binding to miRNAs. Therefore, the potential miRNAs of differentially expressed circRNAs were predicted and interaction networks among circRNAs, miRNAs, and key regulatory mRNAs were constructed to illustrate the function of circRNAs underlying skeletal muscle development and fatty acid metabolism. This study provides new clues for elucidating muscle phenotypic variation in pigs.

Details

Title
Genome-Wide Expression Profiling of mRNAs, lncRNAs and circRNAs in Skeletal Muscle of Two Different Pig Breeds
Author
Hou, Xinhua; Wang, Ligang; Zhao, Fuping  VIAFID ORCID Logo  ; Liu, Xin; Gao, Hongmei; Shi, Lijun; Yan, Hua; Wang, Lixian; Zhang, Longchao
First page
3169
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2601986500
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.