Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Worldwide, motor vehicle accidents are one of the leading causes of death, with alcohol-related accidents playing a significant role, particularly in child death. Aiming to aid in the prevention of this type of accidents, a novel non-invasive method capable of detecting the presence of alcohol inside a motor vehicle is presented. The proposed methodology uses a series of low-cost alcohol MQ3 sensors located inside the vehicle, whose signals are stored, standardized, time-adjusted, and transformed into 5 s window samples. Statistical features are extracted from each sample and a feature selection strategy is carried out using a genetic algorithm, and a forward selection and backwards elimination methodology. The four features derived from this process were used to construct an SVM classification model that detects presence of alcohol. The experiments yielded 7200 samples, 80% of which were used to train the model. The rest were used to evaluate the performance of the model, which obtained an area under the ROC curve of 0.98 and a sensitivity of 0.979. These results suggest that the proposed methodology can be used to detect the presence of alcohol and enforce prevention actions.

Details

Title
In-Vehicle Alcohol Detection Using Low-Cost Sensors and Genetic Algorithms to Aid in the Drinking and Driving Detection
Author
Celaya-Padilla, Jose M 1   VIAFID ORCID Logo  ; Romero-González, Jonathan S 2 ; Galvan-Tejada, Carlos E 2   VIAFID ORCID Logo  ; Galvan-Tejada, Jorge I 2 ; Luna-García, Huizilopoztli 2   VIAFID ORCID Logo  ; Arceo-Olague, Jose G 2   VIAFID ORCID Logo  ; Gamboa-Rosales, Nadia K 1 ; Sifuentes-Gallardo, Claudia 2 ; Martinez-Torteya, Antonio 3   VIAFID ORCID Logo  ; José I De la Rosa 2   VIAFID ORCID Logo  ; Gamboa-Rosales, Hamurabi 2   VIAFID ORCID Logo 

 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, Mexico; [email protected] (J.M.C.-P.); [email protected] (J.S.R.-G.); [email protected] (C.E.G.-T.); [email protected] (J.I.G.-T.); [email protected] (H.L.-G.); [email protected] (J.G.A.-O.); [email protected] (N.K.G.-R.); [email protected] (C.S.-G.); [email protected] (J.I.D.l.R.); Cátedras-CONACyT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico 
 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, Mexico; [email protected] (J.M.C.-P.); [email protected] (J.S.R.-G.); [email protected] (C.E.G.-T.); [email protected] (J.I.G.-T.); [email protected] (H.L.-G.); [email protected] (J.G.A.-O.); [email protected] (N.K.G.-R.); [email protected] (C.S.-G.); [email protected] (J.I.D.l.R.) 
 Escuela de Ingeniería y Tecnologías, Universidad de Monterrey, San Pedro Garza García 66238, Mexico; [email protected] 
First page
7752
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602180975
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.