Abstract

Quantum light sources are crucial for the future of quantum photonic technologies and, among them, single photons on-demand are key resources in quantum communications and information processing. Ideal quantum emitters providing indistinguishable photons in a clocked manner, negligible decoherence and spectral diffusion, and with potential for scalability are today still a major challenge. We report on photostable and indistinguishable single photon emission from dibenzoterrylene molecules isolated in anthracene nanocrystals (DBT:Ac NCs) at 3K. The visibility of two-photon interference is preserved even when they are separated more than thirty times the excited-state lifetime, or ten fluorescence cycles. One of the advantages of organic molecules is the low-cost mass production of nominally identical emitters, that also allow for on-chip integration. These aspects combined with high spectral stability and coherence make them promising for applications and future quantum technologies.

Details

Title
Indistinguishable Photons from a Single Molecule under Pulsed Excitation
Author
Lombardi, Pietro; Colautti, Maja; Duquennoy, Rocco; Murtaza, Ghulam; Majumder, Prosenjit; Toninelli, Costanza
Section
Topical Meeting (TOM) 8- Nonlinear and Quantum Optics
Publication year
2021
Publication date
2021
Publisher
EDP Sciences
ISSN
21016275
e-ISSN
2100014X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2604827737
Copyright
© 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.