Abstract

An important aspect of the study of Quark-Gluon Plasma (QGP) in ultrarelativistic collisions of heavy ions is the ability to identify, in experimental data, a subset of the jets that were strongly modified by the interaction with the QGP. In this work, we propose studying Deep Learning techniques for this purpose. Samples of Z+jet events were simulated in vacuum (pp collisions) and medium (PbPb collisions) and used to train Deep Neural Networks with the objective of discriminating between medium- and vacuum-like jets within the medium (PbPb) sample. Dedicated Convolutional Neural Networks, Dense Neural Networks and Recurrent Neural Networks were developed and trained, and their performance was studied. Our results show the potential of these techniques for the identification of jet quenching effects induced by the presence of the QGP.

Details

Title
Deep Learning for the classification of quenched jets
Author
Apolinário, L 1 ; Castro, N F 2   VIAFID ORCID Logo  ; Crispim, Romão M 3 ; Milhano, J G 1 ; Pedro, R 3 ; Peres, F C, R 4 

 Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa, Portugal (GRID:grid.420929.4); Universidade de Lisboa, Instituto Superior Técnico, Lisboa, Portugal (GRID:grid.9983.b) (ISNI:0000 0001 2181 4263) 
 Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa, Portugal (GRID:grid.420929.4); Universidade do Minho, Departamento de Física, Escola de Ciências, Braga, Portugal (GRID:grid.10328.38) (ISNI:0000 0001 2159 175X) 
 Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa, Portugal (GRID:grid.420929.4) 
 Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa, Portugal (GRID:grid.420929.4); International Iberian Nanotechnology Laboratory (INL), Braga, Portugal (GRID:grid.420330.6) (ISNI:0000 0004 0521 6935); Universidade do Porto, Departamento de Física e Astronomia, Faculdade de Ciências, Porto, Portugal (GRID:grid.5808.5) (ISNI:0000 0001 1503 7226) 
Publication year
2021
Publication date
Nov 2021
Publisher
Springer Nature B.V.
e-ISSN
10298479
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2605774296
Copyright
© The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.