Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Early screening and detection of individuals at high risk of high-frequency hearing loss and identification of risk factors are critical to reduce the prevalence at community level. However, unlike those for individuals facing occupational auditory hazards, a limited number of hearing loss screening models have been developed for community residents. Therefore, this study used lasso regression with 10-fold cross-validation for feature selection and model construction on 38 questionnaire-based variables of 4010 subjects and applied the model to training and testing cohorts to obtain a risk score. The model achieved an area under the curve (AUC) of 0.844 in the model validation stage and individuals’ risk scores were subsequently stratified into low-, medium-, and high-risk categories. A total of 92.79% (1094/1179) of subjects in the high-risk category were confirmed to have hearing loss by audiometry test, which was 3.7 times higher than that in the low-risk group (25.18%, 457/1815). Half of the key indicators were related to modifiable contexts, and they were identified as significantly associated with the incident hearing loss. These results demonstrated that the developed model would be feasible to identify residents at high risk of hearing loss via regular community-level health examinations and detecting individualized risk factors, and eventually provide precision interventions.

Details

Title
Construction and Evaluation of a High-Frequency Hearing Loss Screening Tool for Community Residents
Author
Wang, Yi  VIAFID ORCID Logo  ; Ye, Chengyin; Wang, Dahui; Li, Chenhui; Wang, Shichang; Li, Jinmei; Wu, Jinghua; Wang, Xiaozhen; Xu, Liangwen
First page
12311
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2608118212
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.