Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Detection of small targets in aerial images is still a difficult problem due to the low resolution and background-like targets. With the recent development of object detection technology, efficient and high-performance detector techniques have been developed. Among them, the YOLO series is a representative method of object detection that is light and has good performance. In this paper, we propose a method to improve the performance of small target detection in aerial images by modifying YOLOv5. The backbone is was modified by applying the first efficient channel attention module, and the channel attention pyramid method was proposed. We propose an efficient channel attention pyramid YOLO (ECAP-YOLO). Second, in order to optimize the detection of small objects, we eliminated the module for detecting large objects and added a detect layer to find smaller objects, reducing the computing power used for detecting small targets and improving the detection rate. Finally, we use transposed convolution instead of upsampling. Comparing the method proposed in this paper to the original YOLOv5, the performance improvement for the mAP was 6.9% when using the VEDAI dataset, 5.4% when detecting small cars in the xView dataset, 2.7% when detecting small vehicle and small ship classes from the DOTA dataset, and approximately 2.4% when finding small cars in the Arirang dataset.

Details

Title
ECAP-YOLO: Efficient Channel Attention Pyramid YOLO for Small Object Detection in Aerial Image
Author
Kim, Munhyeong 1   VIAFID ORCID Logo  ; Jeong, Jongmin 2 ; Kim, Sungho 1   VIAFID ORCID Logo 

 Advanced Visual Intelligence Laboratory, Department of Electronic Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea; [email protected] 
 Agency for Defense Development, 111 Sunam-dong, Daejeon 34186, Korea; [email protected] 
First page
4851
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2608134031
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.