Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The maximum soil freezing depth (MSFD) is an important indicator of the thermal state of seasonally frozen ground. Its variation has important implications for the water cycle, ecological processes, climate and engineering stability. This study tested three aspects of data-driven predictions of MSFD in the Qinghai-Tibet Plateau (QTP), including comparison of three popular statistical/machine learning techniques, differences between remote sensing variables and reanalysis data as input conditions, and transportability of the model built by reanalysis data. The results show that support vector regression (SVR) performs better than random forest (RF), k-nearest neighbor (KNN) and the ensemble mean of the three models. Compared with the climate predictors, the remote sensing predictors are helpful for improving the simulation accuracy of the MSFD at both decadal and annual scales (at the annual and decadal scales, the root mean square error (RMSE) is reduced by 2.84 and 1.99 cm, respectively). The SVR model with climate predictor calibration using the in situ MSFD at the baseline period (2001–2010) can be used to simulate the MSFD over historical periods (1981–1990 and 1991–2000). This result indicates the good transferability of the well-trained machine learning model and its availability to simulate the MSFD of the past and the future when remote sensing predictors are not available.

Details

Title
Diversity of Remote Sensing-Based Variable Inputs Improves the Estimation of Seasonal Maximum Freezing Depth
Author
Wang, Bingquan 1 ; Ran, Youhua 1   VIAFID ORCID Logo 

 Heihe Remote Sensing Experimental Research Station, Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected]; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China 
First page
4829
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2608135176
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.