Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study proposes a new use for a paper industry waste material, lignin, in agriculture and agronomy as a fertilizer for arid soils, while following a strategy aiming to both increase the amount of organic matter in these soils and decrease the impact of pollution caused by industrial discharges that contain organic and/or inorganic pollutants generated by the paper industry. In fact, this method works to improve soil quality through a new carbon-rich bioorganic fertilizer (biolignin) that results from a green method called CIMV, a targeted depollution objective of the paper industry. Over the course of 180 days, we monitored the physicochemical and biological characteristics of degraded soils treated with three different biolignin treatments of 0 (D0), 2 (D1), and 4 (D2) g/kg. The humification was then evaluated by the equation E4/E6. A remarkable variation of the physicochemical and biological parameters was observed in D1 and D2: temperature 12–38 °C, humidity 9–29%, and pH 7.06–8.73. The C/N ratio decreased from 266 to 49. After 180 days, the improvement in soil carbon content for the three treatments D0, D1, and D2 was 14%, 19%, and 24%, respectively. A maximum bacterial biomass of 152 (CFU/g soil) was observed on the 30th day for D1. Maximum laccase activity for D2 was observed on the 120th day. D1 and D2 recorded a significant degree of humification compared to D0. The best indicator of humification E4/E6 was observed in D1, where the value reached 2.66 at the end of the treatment period. The D2 treatment showed a remarkable effect improving the fertility of the degraded soil, which confirms that biolignin is a good fertilizer.

Details

Title
The Valorization of Biolignin from Esparto Grass (Stipa tenacissima L.) Produced by Green Process CIMV (Compagnie Industrielle de la Matière Végétale) for Fertilization of Algerian Degraded Soil: Impact on the Physicochemical and Biological Properties
Author
Bendouma, Amal 1   VIAFID ORCID Logo  ; Houyou, Zohra 2 ; Gherib, Abdelaziz 1 ; Gouzi, Hicham 3 

 Process Engineering Laboratory, University of Laghouat, P.O. Box 37, Laghouat 03000, Algeria; [email protected] (A.B.); [email protected] (A.G.) 
 Mechanics Laboratory, University of Laghouat, P.O. Box 37, Laghouat 03000, Algeria 
 Biological and Agronomic Sciences Laboratory, University of Laghouat, P.O. Box 37, Laghouat 03000, Algeria; [email protected] 
First page
13462
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2608150124
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.