It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Bayesian estimation is a powerful theoretical paradigm for the operation of the approach to parameter estimation. However, the Bayesian method for statistical inference generally suffers from demanding calibration requirements that have so far restricted its use to systems that can be explicitly modeled. In this theoretical study, we formulate parameter estimation as a classification task and use artificial neural networks to efficiently perform Bayesian estimation. We show that the network’s posterior distribution is centered at the true (unknown) value of the parameter within an uncertainty given by the inverse Fisher information, representing the ultimate sensitivity limit for the given apparatus. When only a limited number of calibration measurements are available, our machine-learning-based procedure outperforms standard calibration methods. Our machine-learning-based procedure is model independent, and is thus well suited to “black-box sensors”, which lack simple explicit fitting models. Thus, our work paves the way for Bayesian quantum sensors that can take advantage of complex nonclassical quantum states and/or adaptive protocols. These capabilities can significantly enhance the sensitivity of future devices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer