Full text

Turn on search term navigation

© 2021 Hu et al. This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Fertilizer addition can contribute to nitrogen (N) losses from soil by affecting microbial populations responsible for nitrification. However, the effects of N fertilization on ammonia oxidizing bacteria under C4 perennial grasses in nutrient-poor grasslands are not well studied.

Methods

In this study, a field experiment was used to assess the effects of N fertilization rate (0, 67, and 202 kg N ha−1) and grass species (switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii)) on ammonia-oxidizing bacterial (AOB) communities in C4 grassland soils using quantitative PCR, quantitative reverse transcription-PCR, and high-throughput amplicon sequencing of amoA genes.

Results

Nitrosospira were dominant AOB in the C4 grassland soil throughout the growing season. N fertilization rate had a stronger influence on AOB community composition than C4 grass species. Elevated N fertilizer application increased the abundance, activity, and alpha-diversity of AOB communities as well as nitrification potential, nitrous oxide (N2O) emission and soil acidity. The abundance and species richness of AOB were higher under switchgrass compared to big bluestem. Soil pH, nitrate, nitrification potential, and N2O emission were significantly related to the variability in AOB community structures (p < 0.05).

Details

Title
Ammonia-oxidizing bacterial communities are affected by nitrogen fertilization and grass species in native C4 grassland soils
Author
Hu, Jialin; Richwine, Jonathan D; Keyser, Patrick D; Li, Lidong; Yao, Fei; Jagadamma, Sindhu; DeBruyn, Jennifer M
Publication year
2021
Publication date
Dec 16, 2021
Publisher
PeerJ, Inc.
e-ISSN
21678359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2610657041
Copyright
© 2021 Hu et al. This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.