It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Gestational diabetes mellitus (GDM) is one of the critical causes of adverse perinatal outcomes. A reliable estimate of GDM in early pregnancy would facilitate intervention plans for maternal and infant health care to prevent the risk of adverse perinatal outcomes. This study aims to build an early model to predict GDM in the first trimester for the primary health care centre.
Methods
Characteristics of pregnant women in the first trimester were collected from eastern China from 2017 to 2019. The univariate analysis was performed using SPSS 23.0 statistical software. Characteristics comparison was applied with Mann-Whitney U test for continuous variables and chi-square test for categorical variables. All analyses were two-sided with p < 0.05 indicating statistical significance. The train_test_split function in Python was used to split the data set into 70% for training and 30% for test. The Random Forest model and Logistic Regression model in Python were applied to model the training data set. The 10-fold cross-validation was used to assess the model’s performance by the areas under the ROC Curve, diagnostic accuracy, sensitivity, and specificity.
Results
A total of 1,139 pregnant women (186 with GDM) were included in the final data analysis. Significant differences were observed in age (Z=−2.693, p=0.007), pre-pregnancy BMI (Z=−5.502, p<0.001), abdomen circumference in the first trimester (Z=−6.069, p<0.001), gravidity (Z=−3.210, p=0.001), PCOS (χ2=101.024, p<0.001), irregular menstruation (χ2=6.578, p=0.010), and family history of diabetes (χ2=15.266, p<0.001) between participants with GDM or without GDM. The Random Forest model achieved a higher AUC than the Logistic Regression model (0.777±0.034 vs 0.755±0.032), and had a better discrimination ability of GDM from Non-GDMs (Sensitivity: 0.651±0.087 vs 0.683±0.084, Specificity: 0.813±0.075 vs 0.736±0.087).
Conclusions
This research developed a simple model to predict the risk of GDM using machine learning algorithm based on pre-pregnancy BMI, abdomen circumference in the first trimester, age, PCOS, gravidity, irregular menstruation, and family history of diabetes. The model was easy in operation, and all predictors were easily obtained in the first trimester in primary health care centres.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer