Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

In some mouse models, ablative fractional laser (AFL) enhances the efficacy of anti-programmed cell death1 therapy (aPD-1), which was recently approved for basal cell carcinoma (BCC). In this explorative study, we aimed to assess locally applied AFL as an adjuvant to systemic aPD-1 treatment in a clinically relevant BCC model. BCC-carrying mice received aPD-1 alone, AFL alone, aPD-1+AFL, or no treatment. Both aPD-1 and AFL alone significantly increased survival time relative to the untreated controls, while aPD-1 that had been complemented with AFL further promoted survival and improved tumor clearance and growth rates. The BCCs were poorly immune infiltrated, but aPD-1 with adjuvant AFL and AFL alone induced substantial immune cell infiltration in tumors and increased the levels of relevant immune cell subtypes. Thus, the anti-tumor response that was generated by aPD-1 with adjuvant AFL may potentially be promoted by increased immune activity in tumors. In conclusion, the use of a local AFL adjuvant to systemic aPD-1 therapy could hold substantial promise for BCC treatment.

Abstract

The efficacy of anti-programmedcelldeath1therapy (aPD-1), which was recently approved for basal cell carcinoma (BCC) treatment, can be enhanced by adjuvant ablative fractional laser (AFL) in syngeneic murine tumor models. In this explorative study, we aimed to assess locally applied AFL as an adjuvant to systemic aPD-1 treatment in a clinically relevant autochthonous BCC model. BCC tumors (n = 72) were induced in Ptch1+/−K14-CreER2p53fl/fl-mice (n = 34), and the mice subsequently received aPD-1 alone, AFL alone, aPD-1+AFL, or no treatment. The outcome measures included mouse survival time, tumor clearance, tumor growth rates, and tumor immune infiltration. Both aPD-1 and AFL alone significantly increased survival time relative to untreated controls (31 d and 34.5 d, respectively vs. 14 d, p = 0.0348–0.0392). Complementing aPD-1 with AFL further promoted survival (60 d, p = 0.0198 vs. aPD-1) and improved tumor clearance and growth rates. The BCCs were poorly immune infiltrated, but aPD-1 with adjuvant AFL and AFL alone induced substantial immune cell infiltration in the tumors. Similar to AFL alone, combined aPD-1 and AFL increased neutrophil counts (4-fold, p = 0.0242), the proportion of MHCII-positive neutrophils (p = 0.0121), and concordantly, CD4+ and CD8+ T-cell infiltration (p = 0.0061–0.0242). These descriptive results suggest that the anti-tumor response that is generated by aPD-1 with adjuvant AFL is potentially promoted by increased neutrophil and T-cell engraftment in tumors. In conclusion, local AFL shows substantial promise as an adjuvant to systemic aPD-1 therapy in a clinically relevant preclinical BCC model.

Details

Title
Anti-PD-1 Therapy with Adjuvant Ablative Fractional Laser Improves Anti-Tumor Response in Basal Cell Carcinomas
Author
Olesen, Uffe Høgh 1   VIAFID ORCID Logo  ; Wiinberg, Martin 2   VIAFID ORCID Logo  ; Lerche, Catharina Margrethe 3   VIAFID ORCID Logo  ; Jæhger, Ditte Elisabeth 2 ; Andresen, Thomas Lars 2 ; Haedersdal, Merete 1   VIAFID ORCID Logo 

 Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 17, 2400 Copenhagen, Denmark; [email protected] (C.M.L.); [email protected] (M.H.) 
 Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; [email protected] (M.W.); [email protected] (D.E.J.); [email protected] (T.L.A.) 
 Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 17, 2400 Copenhagen, Denmark; [email protected] (C.M.L.); [email protected] (M.H.); Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark 
First page
6326
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612739959
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.