Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chronic hypoxia increases the resistance of pulmonary arteries by stimulating their contraction and augmenting their coverage by smooth muscle cells (SMCs). While these responses require adjustment of the vascular SMC transcriptome, regulatory elements are not well defined in this context. Here, we explored the functional role of the transcription factor nuclear factor of activated T-cells 5 (NFAT5/TonEBP) in the hypoxic lung. Regulatory functions of NFAT5 were investigated in cultured artery SMCs and lungs from control (Nfat5fl/fl) and SMC-specific Nfat5-deficient (Nfat5(SMC)−/−) mice. Exposure to hypoxia promoted the expression of genes associated with metabolism and mitochondrial oxidative phosphorylation (OXPHOS) in Nfat5(SMC)−/− versus Nfat5fl/fl lungs. In vitro, hypoxia-exposed Nfat5-deficient pulmonary artery SMCs elevated the level of OXPHOS-related transcripts, mitochondrial respiration, and production of reactive oxygen species (ROS). Right ventricular functions were impaired while pulmonary right ventricular systolic pressure (RVSP) was amplified in hypoxia-exposed Nfat5(SMC)−/− versus Nfat5fl/fl mice. Scavenging of mitochondrial ROS normalized the raise in RVSP. Our findings suggest a critical role for NFAT5 as a suppressor of OXPHOS-associated gene expression, mitochondrial respiration, and ROS production in pulmonary artery SMCs that is vital to limit ROS-dependent arterial resistance in a hypoxic environment.

Details

Title
NFAT5/TonEBP Limits Pulmonary Vascular Resistance in the Hypoxic Lung by Controlling Mitochondrial Reactive Oxygen Species Generation in Arterial Smooth Muscle Cells
Author
Laban, Hebatullah 1   VIAFID ORCID Logo  ; Siegmund, Sophia 2 ; Zappe, Maren 2 ; Trogisch, Felix A 3   VIAFID ORCID Logo  ; Heineke, Jörg 3 ; De La Torre, Carolina 4 ; Fisslthaler, Beate 5 ; Arnold, Caroline 2 ; Lauryn, Jonathan 6   VIAFID ORCID Logo  ; Büttner, Michael 7 ; Mogler, Carolin 8   VIAFID ORCID Logo  ; Kato, Katsuhiro 9 ; Adams, Ralf H 9 ; Kuk, Hanna 10 ; Fischer, Andreas 11   VIAFID ORCID Logo  ; Hecker, Markus 1 ; Kuebler, Wolfgang M 6   VIAFID ORCID Logo  ; Korff, Thomas 12   VIAFID ORCID Logo 

 Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; [email protected] (H.L.); [email protected] (S.S.); [email protected] (M.Z.); [email protected] (C.A.); [email protected] (M.H.); Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany 
 Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; [email protected] (H.L.); [email protected] (S.S.); [email protected] (M.Z.); [email protected] (C.A.); [email protected] (M.H.) 
 Department of Cardiovascular Physiology, Mannheim Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany; [email protected] (F.A.T.); [email protected] (J.H.); European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; [email protected] 
 NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; [email protected] 
 Institute for Vascular Signalling, Goethe University, Frankfurt am Main, 60323 Frankfurt, Germany; [email protected]; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, 60323 Frankfurt, Germany 
 Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10099 Berlin, Germany; [email protected] (J.L.); [email protected] (W.M.K.) 
 Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany; [email protected] 
 Institute of Pathology, School of Medicine, Technical University Munich, 80333 Munich, Germany; [email protected] 
 Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, University of Münster, 48149 Münster, Germany; [email protected] (K.K.); [email protected] (R.H.A.) 
10  The Ottawa Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada; [email protected] 
11  European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; [email protected]; Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Internal Medicine I, Heidelberg University, 69120 Heidelberg, Germany 
12  Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; [email protected] (H.L.); [email protected] (S.S.); [email protected] (M.Z.); [email protected] (C.A.); [email protected] (M.H.); European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; [email protected] 
First page
3293
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612764060
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.