Full text

Turn on search term navigation

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Since 3D NAND was introduced to the industry with 24 layers, the areal density has been successfully increased more than ten times, and has exceeded 10 Gb/mm2 with 176 layers. The physical scaling of XYZ dimensions including layer stacking and footprint scaling enabled the density scaling. Logical scaling has been successfully realized, too. TLC (triple-level cell, 3 bits per cell) is now the mainstream in 3D NAND, while QLC (quad-level cell, 4 bits per cell) is increasing the presence. Several attempts and partial demonstrations were made for PLC (penta-level cell, 5 bits per cell). CMOS under array (CuA) enabled the die size reduction and performance improvements. Program and erase schemes to address the technology challenges such as short-term data retention of the charge-trap cell and the large block size are being investigated.

Details

Title
Recent Progress on 3D NAND Flash Technologies
Author
Goda, Akira
First page
3156
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612767297
Copyright
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.