Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Texture control of grain-oriented silicon steel is the key factor to ensure the magnetic properties of the finished product. Nb-containing grain-oriented silicon steel with different slab reheating temperatures was hot rolled followed by single-stage or two-stage cold rolling, and the textures were also analyzed. In the single-stage cold rolling process, as the slab reheating temperature is reduced, the intensity of the rotating cube texture {100}<011> and Goss texture {011}<100> drops, and that of the {111}<112> texture increases. In the two-stage cold rolling process, with the decrease in the slab reheating temperature, the intensity of the {111}<112> texture increases from 4.958 to 6.809. At the same slab reheating temperature, the intensity of the rotating cube texture declines more significantly in the two-stage cold rolling process. Finally, two-stage cold rolling with the slab reheating temperature of 1220 °C is found to be more beneficial for the formation of a sharp Goss texture during the second recrystallization. The magnetic induction intensity B800 of the final product is 1.87 T, and the iron loss P1.7/50 is 1.36 W/kg.

Details

Title
Effect of Slab Reheating Temperature on Cold Rolling Texture Evolution of Nb-Containing Grain-Oriented Silicon Steel
Author
Wang, Liguang; Wang, Shuhuan; Li, Jie; Liang, Jinyu  VIAFID ORCID Logo  ; Yunli Feng
First page
1478
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612767591
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.