Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Traditional pest detection methods are challenging to use in complex forestry environments due to their low accuracy and speed. To address this issue, this paper proposes the YOLOv4_MF model. The YOLOv4_MF model utilizes MobileNetv2 as the feature extraction block and replaces the traditional convolution with depth-wise separated convolution to reduce the model parameters. In addition, the coordinate attention mechanism was embedded in MobileNetv2 to enhance feature information. A symmetric structure consisting of a three-layer spatial pyramid pool is presented, and an improved feature fusion structure was designed to fuse the target information. For the loss function, focal loss was used instead of cross-entropy loss to enhance the network’s learning of small targets. The experimental results showed that the YOLOv4_MF model has 4.24% higher mAP, 4.37% higher precision, and 6.68% higher recall than the YOLOv4 model. The size of the proposed model was reduced to 1/6 of that of YOLOv4. Moreover, the proposed algorithm achieved 38.62% mAP with respect to some state-of-the-art algorithms on the COCO dataset.

Details

Title
A Lightweight YOLOv4-Based Forestry Pest Detection Method Using Coordinate Attention and Feature Fusion
Author
Zha, Mingfeng  VIAFID ORCID Logo  ; Qian, Wenbin; Yi, Wenlong  VIAFID ORCID Logo  ; Hua, Jing
First page
1587
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612770191
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.