Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, coconut shell biochar (BC), pickling biochar (HBC), and nano-zero-valent iron-loaded biochar (nZVI-HBC) were prepared; these were used to remove oxytetracycline (OTC), and the removal mechanism and degradation product were analyzed. These biochars were characterized using SEM, XRD, FTIR, and XPS. The effects of biochar addition amount, pH, ion type, and ion concentration on OTC adsorption were studied by a batch adsorption experiment. Under the optimal conditions, the equilibrium adsorption capacity of nZVI-HBC to OTC was 196.70 mg·g−1. The adsorption process can be described by Langmuir isothermal adsorption equations, conforming to the pseudo-second-order dynamics model, indicating that adsorption is dominated by single-molecule chemical adsorption, and a spontaneous process of increasing heat absorption entropy. Mass spectrometry showed that the OTC removal process of nZVI-HBC included not only adsorption but also degradation. These results provide a practical and potentially valuable material for the removal of OTC.

Details

Title
Mechanism of Oxytetracycline Removal by Coconut Shell Biochar Loaded with Nano-Zero-Valent Iron
Author
Li, Qi; Zhao, Siyu; Wang, Yuhang
First page
13107
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612784330
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.