Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Prediction of visual attention is a new and challenging subject, and to the best of our knowledge, there are not many pieces of research devoted to the anticipation of students’ cognition when solving tests. The aim of this paper is to propose, implement, and evaluate a machine learning method that is capable of predicting saliency maps of students who participate in a learning task in the form of quizzes based on quiz questionnaire images. Our proposal utilizes several deep encoder–decoder symmetric schemas which are trained on a large set of saliency maps generated with eye tracking technology. Eye tracking data were acquired from students, who solved various tasks in the sciences and natural sciences (computer science, mathematics, physics, and biology). The proposed deep convolutional encoder–decoder network is capable of producing accurate predictions of students’ visual attention when solving quizzes. Our evaluation showed that predictions are moderately positively correlated with actual data with a coefficient of 0.547 ± 0.109. It achieved better results in terms of correlation with real saliency maps than state-of-the-art methods. Visual analyses of the saliency maps obtained also correspond with our experience and expectations in this field. Both source codes and data from our research can be downloaded in order to reproduce our results.

Details

Title
Deep Convolutional Symmetric Encoder—Decoder Neural Networks to Predict Students’ Visual Attention
Author
Hachaj, Tomasz  VIAFID ORCID Logo  ; Stolińska, Anna  VIAFID ORCID Logo  ; Andrzejewska, Magdalena  VIAFID ORCID Logo  ; Czerski, Piotr  VIAFID ORCID Logo 
First page
2246
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612845114
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.