Content area

Abstract

We solve d-dimensional Heesch’s problem in the asymptotic sense. Namely, we show that, if d, then there is no uniform upper bound on the set of all possible finite Heesch numbers in the space Ed; in other words, given any nonnegative integer n, we can find a dimension d (depending on n) in which there exists a hypersolid whose Heesch number is finite and greater than n.

Details

Title
Asymptotical Unboundedness of the Heesch Number in Ed for d→∞
Author
Bašić Bojan 1 ; Slivková Anna 1 

 University of Novi Sad, Department of Mathematics and Informatics, Novi Sad, Serbia (GRID:grid.10822.39) (ISNI:0000 0001 2149 743X) 
Pages
328-337
Publication year
2022
Publication date
Jan 2022
Publisher
Springer Nature B.V.
ISSN
01795376
e-ISSN
14320444
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2613411668
Copyright
© Springer Science+Business Media, LLC, part of Springer Nature 2020.