Full text

Turn on search term navigation

Copyright © 2021 Yuxing Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Dispersion entropy (DE), as a newly proposed entropy, has achieved remarkable results in its application. In this paper, on the basis of DE, combined with coarse-grained processing, we introduce the fluctuation and distance information of signal and propose the refined composite multiscale fluctuation-based reverse dispersion entropy (RCMFRDE). As an emerging complexity analysis mode, RCMFRDE has been used for the first time for the feature extraction of ship-radiated noise signals to mitigate the loss caused by the misclassification of ships on the ocean. Meanwhile, a classification and recognition method combined with K-nearest neighbor (KNN) came into being, namely, RCMFRDE-KNN. The experimental results indicated that RCMFRDE has the highest recognition rate in the single feature case and up to 100% in the double feature case, far better than multiscale DE (MDE), multiscale fluctuation-based DE (MFDE), multiscale permutation entropy (MPE), and multiscale reverse dispersion entropy (MRDE), and all the experimental results show that the RCMFRDE proposed in this paper improves the separability of the commonly used entropy in the hydroacoustic domain.

Details

Title
RCMFRDE: Refined Composite Multiscale Fluctuation-Based Reverse Dispersion Entropy for Feature Extraction of Ship-Radiated Noise
Author
Li, Yuxing 1   VIAFID ORCID Logo  ; Jiao, Shangbin 1   VIAFID ORCID Logo  ; Geng, Bo 2   VIAFID ORCID Logo  ; Jiang, Xinru 2   VIAFID ORCID Logo 

 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China; Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China 
 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China 
Editor
Mohammad Yaghoub Abdollahzadeh Jamalabadi
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2613962638
Copyright
Copyright © 2021 Yuxing Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/