This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Dengue regards one of the utmost serious arboviral infections around the world. dengue virus (DENV) is transmitted through bites of female Aedes mosquitos especially Aedes (Stegomyia) aegypti, Ae. alpopictus [1], Ae. niveus, and Ae. polynesiensis [2]. DENV infection is almost similar to flu-like infection and sometimes develops into possibly lethal difficulties or severe illness including dengue shock syndrome and dengue hemorrhagic fever. World Health Organization (WHO) reports that DENV infection has been shown to 30-fold increase around the globe over the past five decades, and approximately 100 million newly infected people are estimated in over 100 endemic countries with 20,000 deaths annually [3].
DENV and its vectors are primarily noticed in tropical and subtropical environments globally, frequently in urban and semiurban areas. In Bangladesh, DENV has been detected as a severe health hazard. Between 2000 and 2008, 50,148 people were hospitalized for dengue in Bangladesh. But in August 2019, nearly 60,000 dengue patients have been hospitalized, and approximately 100 deaths have been reported. Severe DENV infection is a leading cause of tenacious sickness and deaths of people of all ages in Asian and Latin American countries. Unfortunately, we have no particular treatment strategy for dengue infection. It may be because historically our pharmaceutical section did not come up with much attention to this vector-borne viral disease.
This review is aimed at sketching a current scenario on DENV, dengue infection, and dengue vectors along with the production, transmission, pathogenesis, and ways of control of DENV, and its vectors offers a comprehensive view of production, transmission, pathogenesis, and control measures of DENV and its vectors.
2. Dengue Virus (DENV)
DENV, a pathogenic arthropod-borne flavivirus (arbovirus), is a single-stranded and positive-sense RNA molecule belonging to the family Flaviviridae.
The Flaviviridae family includes viruses transmitted by arthropods that cause serious illness in humans. The family includes a single genus-Flavivirus, with several types [4]. Recently, another subdivision of the family into three genera has been proposed as follows: genus Flavivirus includes arboviruses (yellow fever virus, dengue fever virus); genus Pestivirus-viruses involved in animal pathology; and genus Hepacavirus-the proposed name for different variants of hepatitis C virus [4].
To date, 47 strains of DENV have been identified. The total number of four closely linked serotypes (from DENV -1 to -4) of DENV has been identified to date, but they are lightly antigenically distinct [5, 6], and those can be subdivided into several genotypes according to their gene sequences [7]. These serotypes are generally progressed from a mutual ancestor, and all are considered as the causative agent of approximately similar disease spectrum in humans due to DENV selecting different receptors based on cell types and virus strains [8]. Developed viral particles have a spherical shape with 11 kb in length and 40-50 nm in diameter, containing single-stranded and positive-sense RNA molecule, which has a 5-methyl cap with a single open reading frame [2]. Dengue virus and its common four serotypes have shown in Figure 1.
[figure omitted; refer to PDF]
Adult Ae. aegypti has a white scale that forms a lyre or violin shape at the dorsal side of the thorax, while the adult Ae. albopictus forms a white stripe at the middle point of the top of the thorax region. The white bands of every tarsal segment of the hind legs of these mosquitos are known as the white stripe. The abdomen is generally found to be black or dark brown, but sometimes, it also bears white scales. Females are usually larger than males; on the other way, through finding small palps tipped with silver or white scales, they can be discriminated against properly. Males are specially identified by the plumose type of antennae. On the other hand, females are seen to bear short hair. Under a microscope, the mouthparts of the male are watched as a structural modification for nectar feeding, and female mouthparts are viewed as a modified structure for feeding on blood. The darkly coloured proboscis is found to be present in both sexes. In addition, two clusters of white scales presented on the segment above the proboscis are known as clypeus. The tip of the abdomen is pointed out as a distinctive feature of all Aedes species [9].
2.2. Geographical Distribution
DENV mainly originated from monkeys, then jumped to humans in Southeast Asia or Africa between 100 and 800 years ago. Geographically DENV has been restricted till the 1950s, but after the Second World War caused a rapid distribution throughout the world. Firstly, DENV infection was recognized in the Thailand and Philippines in the 1850s, and after the 1980s towards Latin America and the Caribbean. Presently, DENV is prevalent throughout the different countries (at least 100 countries) including in Asia, the Pacific, the Americas, Africa, and the Caribbean. DENV epidemics occurred in 26 states [10]. Scientific reports demonstrate that DENV-2 and 3 serotypes were mostly outbroken before 2000 and between 2000 and 2009, respectively. DENV-1 serotype started to dominate worldwide dengue outbreaks and after 2010, the DENV-4 [11].
The geographical distribution of DENV worldwide has been shown in Figure 3.
[figure omitted; refer to PDF]
Ae. Aegypti is scattered in tropical areas geographically, and it breeds artificially in containers (such as tyres, drums, flower vases including plastic food containers, tin cans, and old motor parts) that are filled with water [12].
Ae. aegypti is an insect of holometabolous type, which is fully developed after completing metamorphosis (i.g., four growing phases from egg to adult period). The duration of the life span of an adult may be 2 to 4 weeks; however, it depends on the environmental conditions, at least 4-5 times a female mosquito lays eggs throughout her whole life span and the average 10 to 100 eggs in a single spawn. Three diverse polytypic forms are found in Ae. aegypti such as sylvan, domestic, and peridomestic [13].
A sylvan type is generally a rural form which breeds in tree holes, normally in forests; the domestic type commonly breeds in municipal surroundings, frequently inside or around houses; and the peridomestic type usually survives in biologically modified regions as groves and coconut farms [14]. Ae. aegypti can survive above 4°C [15]; on the other hand, about 15-37°C temperature is required for a complete life cycle [16].
The extent of DENV epidemics not only depends on the presence of DENV and mosquito genotypes but also depends on how they interrelate with local temperature [17]. Nevertheless, a current study demonstrated that DENV infection can alter gene expression in the Ae. aegypti mosquito’s head that causes a loss of their olfactory preferences, thereby modifying oviposition site choice [18]. Now, the question is how safe is the host nervous system’s homeostasis during Dengue infection?
2.3. Life Cycle
Primarily, the DENV was transmitted via sylvatic cycles in Asia and Africa by Aedes mosquito and the nonhuman primates, with occasional appearances of human populations [19]. However, nowadays, the global spread of DENV follows its emergence of all types of transmissions (e.g., sylvatic cycles and vertical: mosquito to mosquito). Thus, its primary life cycle entirely involves the transmission between Aedes mosquitoes and humans [20]. One report suggests that dogs or other animals may act as incidental hosts and may serve as reservoirs of DENV infection [21]. Life cycles of mosquitoes have been shown in Figure 4.
[figure omitted; refer to PDF]
Infection of virus involves various stages:
(i) In the initial steps, DENV binds to cell receptors including mannose-binding receptor (MR) and DC-SIGN (dendritic cell-specific ICAM3 grabbing nonintegrin) receptor present at the surface of the cell, followed by fusion and entry
(ii) Clathrin-mediated endocytosis and transport of DENV take place along with pH-dependent fusion with endocytosis
(iii) The genomic ssRNA (positive-sense) is translated hooked on a polyprotein, which is smitten into all proteins
(iv) Transcription and ribonucleic acid (RNA) replication occurs at the endoplasmic reticulum (ER) surface
(v) A synthesized dsRNA genomic virus is taking place at ER. At the ER, virions bud and are passaged to the Golgi, where DENV prM (membrane) protein is cleaved, and virion maturation takes place and is released by exocytosis
Natural compounds inhibit several proteins involved in the transcription as well as translation machinery essential in the DENV life cycle.
Furthermore, natural compounds block the virus replication by modulating the inflammatory redox-sensitive pathways and host cell signaling. Details of plant-derived natural compounds and their antidengue activities are stipulated in Table 2, and their chemical structures have been displayed in Figure 7.
Table 2
Antidengue activities of natural compounds.
Botanical name | Plants part | Isolated compounds | Model | Results | References |
Garcinia mangostana | Fruits | α-Mangostin | DENV infection in human peripheral blood mononuclear cells (PBMC) in vitro | ↓ virus replication, ↓ TNF-α, ↓ IFN-γ, ↓ IL-6, ↓ MIP-1β, ↓ IP-10 | [196, 197] |
Anacolosa pervilleana | Leaves | Octadeca-9,11,13-triynoic acid | DENV NS5 RNA-dependent RNA polymerase (RdRp) assay in vitro | [198] | |
Streptomyces aureofaciens | Fermentation | Narasin | DENV2-infected hepatocytes Huh-7 cells in vitro | [199] | |
Glycyrrhiza glabra | Root | Glycyrrhizin | DENV serotypes1-3 in vitro | [200] | |
Glycyrrhizic acid | DENV2 infected Vero E6 cells in vitro | [201] | |||
Squalus acanthias | Liver | Squalamine | Human endothelial cells HMEC-1 in vitro | ↓ viral infection | [202] |
Zastera marina. Rees | Marine eelgrass | Zoasteric acid | DENV serotypes (1–4) in vitro | [137] | |
Quercus lusitanica | Galls | Methyl gallate | DENV-2 infected C6/36 cells in vitro | ↓ DENV-2 NS2B/3 protease | [203] |
Flacourtia ramontchi | Stem bark | Flacourtosides A, E | DENV NS5 polymerase RdRp in vitro | [204] | |
Gymnochrinus richeri | Stalked fossil crinoïd | Gymnochrome B | DENV-2, DENV-4 infected PS cells in vitro | [205] | |
Gymnochrinus richeri | Living fossil crinoid | Gymnochrome D, isogymnochrome D | DENV-1 infected PS cells in vitro | Reduction of foci was smaller than 1 μg/mL | [206] |
Arrabidaea pulchra | Leaves | Verbascoside, caffeoylcalleryanin, ursolic acid | DENV-2 infected Vero cells in vitro | [207] | |
Trigonostemon cherrieri | Bark and wood | Trigocherrin A, trigocherriolides A and B | DENV NS5 polymerase RdRp in vitro | [208] | |
Micromonospora rhodorangea | Whole part | Geneticin | DENV-2 infected BHK cells in vitro | [209] | |
Castanospermum australe | Seeds | Castanospermine | DENV-2 infection of Huh-7 and BHK-21 cells 105 PFU of mouse-adapted DENV-2 in vitro/in vivo | [210] | |
Coptis chinensis Franch | Rhizomes | Palmatine | DENV-2 infected Vero cells in vitro | [211] | |
Psychotria Ipecacuanha | Roots | Emetine hydrochloride | DENV-2 infected Huh-7, BHK-21 in vitro | [212] | |
Distictella elongate (Vahl) Urb | Leaves and fruits | Petcolinarin and acacetin-7-O-Rutinoside | DENV-2 infected Vero, LLCMK2 cells in vitro | [213, 214] | |
Scutellaria baicalensis | Roots | Baicalein | DENV-2 infected Vero cells in vitro | [180, 215] | |
Cryptocarya chartacea | Barks | Chartaceones C-F | Dengue virus NS5 RdRp inhibition in vitro | [216, 217] | |
Boesenbergia rotunda (L.) | Rhizomes | Panduratin A 4-hydroxypanduratin B | DENV-2 NS2B/NS3 protease in vitro | [123] | |
Tephrosia s.p. | Aerial parts | Glabranine 7-O-methyl-glabranine | DENV-2 serotype in vitro | 70% inhibition | [134] |
Mimosa scabrella | Seeds | Mannose/galactose (1 : 1) | DENV-1 (Hawaii strain) virus in vitro | ↓ virus titer | [114, 131] |
Leucaena leucocephala | Mannose/galactose (1 : 4) | ↓ virus titer | [114, 131] | ||
Gymnogongrus torulosus | Red seaweed | DL-galactan hybrids | DENV-2 serotype infected Vero cells in vitro | [128] | |
G. griffithsiae and Cryptonemia crenulata | Sulfated G3d and C2S-3 polysaccharides | [125] | |||
Cladosiphon okamuranus | Brown seaweeds | Fucoidan | DENV-2 infected BHK-21 cells in vitro | [78, 218] | |
Nephelium lappaceum L. | Whole plant | Geraniin | DENV-2 E domain III (rE-DIII) protein in vitro | [219, 220] | |
Scutellaria baicalensis | Radices | Baicalin | DENV-2 (NGC strain) infected Vero cells in vitro | [221, 222] | |
Camellia sinensis | Dried leaves | Epigallocatechin gallate | Dengue virus (serotypes 1–4) infected Vero cells in vitro | [223] | |
Zoanthus spp. | Animal materials | Zoanthone A | DENV-2 NS5 polymerase in vitro | [224] | |
Mammea americana | Seeds | Coumarin A | DENV-2/NG strain in vitro | [225] | |
Tabernaemontana cymosa | Seeds | Lupeol acetate | [225] | ||
Angelica keiskei | Roots | Brefeldin A | DENV serotypes (1–4) in vitro | [226] | |
Uncaria rhynchophylla | Leaves | Hirsutine | DENV-1 infected A549 cells in vitro | [227] | |
Viola yedoensis Makino | Aerial parts | Luteolin | DENV infected HEK-293 T, A549, and BHK-21 cells in vitro | [228] | |
Persea americana | Fruits | (2 R,4 R)-1,2,4-Trihydroxyheptadec-16-yne | DENV serotypes (1–4) in vitro | [229] | |
Nephelium lappaceum | Rind | Geraniin | DENV-2 RNA synthesis in Vero cells in vitro | [195] | |
Palythoa mutuki | Formosan zoanthid | Peridinin | DENV NS2B/NS3 protease in vitro | [230] | |
Ganoderma lucidum | Fruiting bodies | Ganodermanotriol | [231] | ||
Faramea bahiensis | Leaves | 5-Hydroxy-4 | DENV-2 in HepG2 cells in vitro | ↓ viral replication | [232] |
Rhodiola rosea | Roots | Salidroside | DENV serotype-2 infection in vitro | ↓ DENV envelope protein | [233] |
Swietenia macrophylla | Seeds | Swielimonoid B | [234] |
Monocyte macrophages are thought to be the principal target cells for the DENV, the cause of dengue fever and hemorrhagic fever. Besides Ca2+, depletion of Mg2+ is also evident during binding of DENV to monocyte macrophages and cells of T cell and B cell lineages in in vitro studies [8]. It has been seen that the monocyte-derived macrophages discriminated in the presence of vitamin D3 restrict DENV infection and moderate the classical inflammatory cytokine (e.g., TNF-α and IL-1β, -4, and -10) response, where a reduced surface expression of C-type lectins, including the mannose receptor [214].
In another report, 1,25(OH)2D3 is evident to suppress the levels of IL-4 and IL-17A and modulate the levels of IL-12p70 and IL-10 in DENV infected U937-DC-SIGN cells and THP-1 macrophages, suggesting an immunomodulatory power that can ameliorate inflammation during dengue infections [196]. These findings have also complied with an earlier report [217]. In a clinical study, patients (
5. Conclusions and Perspectives
To date, it is not possible to recognize intricate details and the complexity of the target of DENV of the other suitable vectors/secondary or hosts for its entrance, production, transmission, and pathogenesis. Several preventive measures have been taken; however, still, there is a deficiency of operative treatment modalities of DENV infections in human and pet animals. DENV-mediated imbalance of micronutrients may be one of the effective significances of numerous pathophysiological situations, such as Ca+2 depletion for muscle pain, irregular heartbeats, muscle weakness, fatigue, painful signs and symptoms, and deficiency of vitamin D in case of inflammatory conditions. The deficiency of vitamin D leads to oxidative stress and the inflammatory process [235], which may contribute to lowering the standard levels of platelet in patients with DENV. The internal bleeding and fatigue of the infected patients perform the leading functions for platelet deficiency.
Taken together, the biochemical markers and immunological parameters can be considered as important diagnostic tools in DENV infection. Besides preventive measures, the medicinal plants and their derivatives might be alternative tools in the treatment of DENV infection. Calcium along with vitamin D supplements can be used in DENV infection. More researches are necessary regarding to the successful diagnosis, prevention, and control of dengue worldwide.
Acknowledgments
This work was supported by CONICYT PIA/APOYO CCTE AFB170007.
[1] V. H. Ferreira-de-Lima, T. N. Lima-Camara, "Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a systematic review," Parasites & Vectors, vol. 11 no. 1,DOI: 10.1186/s13071-018-2643-9, 2018.
[2] M. K. Zahoor, A. Rasul, M. A. Zahoor, I. Sarfraz, M. Zulhussnain, R. Rasool, H. N. Majeed, F. Jabeen, K. Ranian, Dengue fever: A general perspective. Chapter 1, 2018.
[3] WHO, Dengue and Severe Dengue, 2019.
[4] A. Wilder-Smith, E. E. Ooi, O. Horstick, B. Wills, "Dengue," Lancet, vol. 393 no. 10169, pp. 350-363, DOI: 10.1016/S0140-6736(18)32560-1, 2019.
[5] L. C. Katzelnick, J. M. Fonville, G. D. Gromowski, J. B. Arriaga, A. Green, S. L. James, L. Lau, M. Montoya, C. Wang, L. A. VanBlargan, C. A. Russell, H. M. Thu, T. C. Pierson, P. Buchy, J. G. Aaskov, J. L. Muñoz-Jordán, N. Vasilakis, R. V. Gibbons, R. B. Tesh, A. D. M. E. Osterhaus, R. A. M. Fouchier, A. Durbin, C. P. Simmons, E. C. Holmes, E. Harris, S. S. Whitehead, D. J. Smith, "Dengue viruses cluster antigenically but not as discrete serotypes," Science, vol. 349 no. 6254, pp. 1338-1343, DOI: 10.1126/science.aac5017, 2015.
[6] D. Normile, "Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts," Science, vol. 342 no. 6157,DOI: 10.1126/science.342.6157.415, 2013.
[7] E. Holmes, S. Twiddy, "The origin, emergence and evolutionary genetics of dengue virus," Infection, Genetics and Evolution, vol. 3 no. 1, pp. 19-28, DOI: 10.1016/S1567-1348(03)00004-2, 2003.
[8] H. Bielefeldt-Ohmann, M. Meyer, D. R. Fitzpatrick, J. S. Mackenzie, "Dengue virus binding to human leukocyte cell lines: receptor usage differs between cell types and virus strains," Virus Research, vol. 73 no. 1, pp. 81-89, DOI: 10.1016/S0168-1702(00)00233-1, 2001.
[9] I. C. dos Reis, G. Gibson, T. Ayllón, A. de Medeiros Tavares, J. M. G. de Araújo, E. da Silva Monteiro, A. Rodrigues Aguiar, J. V. de Oliveira, A. A. P. de Paiva, H. Wana Bezerra Pereira, J. Dantas Monteiro, M. Sá Carvalho, P. C. Sabroza, N. Alves Honório, "Entomo-virological surveillance strategy for dengue, Zika and chikungunya arboviruses in field-caught Aedes mosquitoes in an endemic urban area of the Northeast of Brazil," Acta Tropica, vol. 197,DOI: 10.1016/j.actatropica.2019.105061, 2019.
[10] J. P. Messina, O. J. Brady, N. Golding, M. U. Kraemer, G. W. Wint, S. E. Ray, D. M. Pigott, F. M. Shearer, K. Johnson, L. Earl, L. B. Marczk, "The current and future global distribution and population at risk of dengue," Nature Microbiology, vol. 4 no. 9, pp. 1508-1515, DOI: 10.1038/s41564-019-0476-8, 2019.
[11] V. P. Waman, S. M. Kasibhatla, M. M. Kale, U. Kulkarni-Kale, "Population genomics of dengue virus serotype 4: insights into genetic structure and evolution," Archives of Virology, vol. 161 no. 8, pp. 2133-2148, DOI: 10.1007/s00705-016-2886-8, 2016.
[12] M. Castillo-Méndez, V. Valverde-Garduño, "Aedes aegypti Immune response and its potential impact on dengue virus transmission," Viral Immunology, vol. 33 no. 1, pp. 38-47, DOI: 10.1089/vim.2019.0051, 2020.
[13] A. Wilder-Smith, "The expanding geographic range of dengue in Australia," The Medical Journal of Australia, vol. 215 no. 4, pp. 171-172, DOI: 10.5694/mja2.51185, 2021.
[14] N. A. Johari, K. Voon, S. Y. Toh, L. H. Sulaiman, I. K. S. Yap, P. K. C. Lim, "Sylvatic dengue virus type 4 in Aedes aegypti and Aedes albopictus mosquitoes in an urban setting in peninsular Malaysia," PLoS Neglected Tropical Diseases, vol. 13 no. 11, article e0007889,DOI: 10.1371/journal.pntd.0007889, 2019.
[15] I. M. Kramer, A. Kreß, D. Klingelhöfer, C. Scherer, P. Phuyal, U. Kuch, B. Ahrens, D. A. Groneberg, M. Dhimal, R. Müller, "Does winter cold really limit the dengue vector Aedes aegypti in Europe?," Parasites & Vectors, vol. 13 no. 1,DOI: 10.1186/s13071-020-04054-w, 2020.
[16] R. A. Marinho, E. B. Beserra, M. A. Bezerra-Gusmão, V. D. S. Porto, R. A. Olinda, C. A. C. Dos Santos, "Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil," Journal of Vector Ecology, vol. 41 no. 1,DOI: 10.1111/jvec.12187, 2016.
[17] M. Hau, R. E. Ricklefs, M. Wikelski, K. A. Lee, J. D. Brawn, "Corticosterone, testosterone and life-history strategies of birds," Proceedings of the Royal Society B: Biological Sciences, vol. 277 no. 1697, pp. 3203-3212, DOI: 10.1098/rspb.2010.0673, 2010.
[18] J. Gaburro, P. N. Paradkar, M. Klein, A. Bhatti, S. Nahavandi, J. B. Duchemin, "Dengue virus infection changes Aedes aegypti oviposition olfactory preferences," Scientific Reports, vol. 8 no. 1,DOI: 10.1038/s41598-018-31608-x, 2018.
[19] K. A. Hanley, T. P. Monath, S. C. Weaver, S. L. Rossi, R. L. Richman, N. Vasilakis, "Fever versus fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus," Infection, Genetics and Evolution, vol. 19, pp. 292-311, DOI: 10.1016/j.meegid.2013.03.008, 2013.
[20] A. D. Haddow, H. Guzman, V. L. Popov, T. G. Wood, S. G. Widen, A. D. Haddow, R. B. Tesh, S. C. Weaver, "First isolation of Aedes flavivirus in the Western Hemisphere and evidence of vertical transmission in the mosquito Aedes (Stegomyi) albopictus (Diptera: Culicidae)," Virology, vol. 440 no. 2, pp. 134-139, DOI: 10.1016/j.virol.2012.12.008, 2013.
[21] S. Thongyuan, P. Kittayapong, "First evidence of dengue infection in domestic dogs living in different ecological settings in Thailand," PLoS One, vol. 12 no. 8, article e0180013,DOI: 10.1371/journal.pone.0180013, 2017.
[22] J. L. Ramirez, G. Dimopoulos, "The Toll immune signaling pathway control conserved anti-dengue defenses across diverse _Ae. aegypti_ strains and against multiple dengue virus serotypes," Developmental and Comparative Immunology, vol. 34 no. 6, pp. 625-629, DOI: 10.1016/j.dci.2010.01.006, 2010.
[23] Z. Xi, J. L. Ramirez, G. Dimopoulos, "The Aedes aegypti toll pathway controls dengue virus infection," PLoS Pathogens, vol. 4 no. 7, article e1000098,DOI: 10.1371/journal.ppat.1000098, 2008.
[24] N. Luplertlop, P. Surasombatpattana, S. Patramool, E. Dumas, L. Wasinpiyamongkol, L. Saune, R. Hamel, E. Bernard, D. Sereno, F. Thomas, D. Piquemal, H. Yssel, L. Briant, D. Missé, "Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following infection with dengue virus," PLoS Pathogens, vol. 7 no. 1, article e1001252,DOI: 10.1371/journal.ppat.1001252, 2011.
[25] J. A. Souza-Neto, S. Sim, G. Dimopoulos, "An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense," Proceedings of the National Academy of Sciences of the United States of America, vol. 106 no. 42, pp. 17841-17846, DOI: 10.1073/pnas.0905006106, 2009.
[26] N. J. Caplen, Z. Zheng, B. Falgout, R. A. Morgan, "Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference," Molecular Therapy, vol. 6 no. 2, pp. 243-251, DOI: 10.1006/mthe.2002.0652, 2002.
[27] M. Hussain, T. Walker, S. L. O'Neill, S. Asgari, "Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector, _ Aedes aegypti _," Insect Biochemistry and Molecular Biology, vol. 43 no. 2, pp. 146-152, DOI: 10.1016/j.ibmb.2012.11.005, 2013.
[28] X. Liu, C. Guo, Y. Huang, X. Zhang, Y. Chen, "Inhibition of porcine reproductive and respiratory syndrome virus by Cecropin D in vitro," Infection, Genetics and Evolution, vol. 34,DOI: 10.1016/j.meegid.2015.06.021, 2015.
[29] P.-S. Yen, A. James, J. C. Li, C. H. Chen, A. B. Failloux, "Synthetic miRNAs induce dual arboviral-resistance phenotypes in the vector mosquito Aedes aegypti," Communications Biology, vol. 1 no. 1,DOI: 10.1038/s42003-017-0011-5, 2018.
[30] P. Miesen, A. Ivens, A. H. Buck, R. P. van Rij, "Small RNA profiling in dengue virus 2-infected Aedes Mosquito cells reveals viral piRNAs and novel host miRNAs," PLoS Neglected Tropical Diseases, vol. 10 no. 2, article e0004452,DOI: 10.1371/journal.pntd.0004452, 2016.
[31] J. C. Scott, D. E. Brackney, C. L. Campbell, V. Bondu-Hawkins, B. Hjelle, G. D. Ebel, K. E. Olson, C. D. Blair, "Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells," PLoS Neglected Tropical Diseases, vol. 4 no. 10, article e848,DOI: 10.1371/journal.pntd.0000848, 2010.
[32] Y. Wang, B. Jin, P. Liu, J. Li, X. Chen, J. Gu, "piRNA profiling of dengue virus type 2-infected Asian Tiger mosquito and midgut tissues," Viruses, vol. 10 no. 4,DOI: 10.3390/v10040213, 2018.
[33] X. Wu, H. Hong, J. Yue, Y. Wu, X. Li, L. Jiang, L. Li, Q. Li, G. Gao, X. Yang, "Inhibitory effect of small interfering RNA on dengue virus replication in mosquito cells," Virology Journal, vol. 7 no. 1, pp. 270-270, DOI: 10.1186/1743-422X-7-270, 2010.
[34] U. Palatini, P. Miesen, R. Carballar-Lejarazu, L. Ometto, E. Rizzo, Z. Tu, R. P. van Rij, M. Bonizzoni, "Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus," BMC Genomics, vol. 18 no. 1,DOI: 10.1186/s12864-017-3903-3, 2017.
[35] S. Sim, N. Jupatanakul, J. L. Ramirez, S. Kang, C. M. Romero-Vivas, H. Mohammed, G. Dimopoulos, "Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions," PLoS Neglected Tropical Diseases, vol. 7 no. 7, article e2295,DOI: 10.1371/journal.pntd.0002295, 2013.
[36] M. M. Choy, O. M. Sessions, D. J. Gubler, E. E. Ooi, "Production of infectious dengue virus in Aedes aegypti is dependent on the ubiquitin proteasome pathway," PLoS Neglected Tropical Diseases, vol. 9 no. 11, article e0004227,DOI: 10.1371/journal.pntd.0004227, 2015.
[37] A. Troupin, B. Londono-Renteria, M. J. Conway, E. Cloherty, S. Jameson, S. Higgs, D. L. Vanlandingham, E. Fikrig, T. M. Colpitts, "A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection," Biochimica et Biophysica Acta, vol. 1860 no. 9, pp. 1898-1909, DOI: 10.1016/j.bbagen.2016.05.033, 2016.
[38] W. C. T. Black, K. E. Bennett, N. Gorrochótegui-Escalante, C. V. Barillas-Mury, I. Fernández-Salas, M.́. de Lourdes Muñoz, J. A. Farfán-Alé, K. E. Olson, B. J. Beaty, "Flavivirus Susceptibility in Aedes aegypti," Archives of Medical Research, vol. 33 no. 4, pp. 379-388, DOI: 10.1016/S0188-4409(02)00373-9, 2002.
[39] N. Kato, C. R. Mueller, J. F. Fuchs, K. McElroy, V. Wessely, S. Higgs, B. M. Christensen, "Evaluation of the function of a type I peritrophic matrix as a physical barrier for midgut epithelium invasion by mosquito-borne pathogens in Aedes aegypti," Vector Borne and Zoonotic Diseases, vol. 8 no. 5, pp. 701-712, DOI: 10.1089/vbz.2007.0270, 2008.
[40] I. Sánchez-Vargas, J. C. Scott, B. K. Poole-Smith, A. W. E. Franz, V. Barbosa-Solomieu, J. Wilusz, K. E. Olson, C. D. Blair, "Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway," PLoS Pathogens, vol. 5 no. 2, article e1000299,DOI: 10.1371/journal.ppat.1000299, 2009.
[41] J. Ramos-Castañeda, C. González, M. A. Jiménez, J. Duran, S. Hernández-Martínez, M. H. Rodríguez, H. Lanz-Mendoza, "Effect of nitric oxide on dengue virus replication in Aedes aegypti and Anopheles albimanus," Intervirology, vol. 51 no. 5, pp. 335-341, DOI: 10.1159/000175639, 2009.
[42] J. L. Ramirez, J. Souza-Neto, R. T. Cosme, J. Rovira, A. Ortiz, J. M. Pascale, G. Dimopoulos, "Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence," PLoS Neglected Tropical Diseases, vol. 6 no. 3, article e1561,DOI: 10.1371/journal.pntd.0001561, 2012.
[43] J. L. Ramirez, S. M. Short, A. C. Bahia, R. G. Saraiva, Y. Dong, S. Kang, A. Tripathi, G. Mlambo, G. Dimopoulos, "Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities," PLoS Pathogens, vol. 10 no. 10, article e1004398,DOI: 10.1371/journal.ppat.1004398, 2014.
[44] Y. I. Angleró-Rodríguez, O. A. C. Talyuli, B. J. Blumberg, S. Kang, C. Demby, A. Shields, J. Carlson, N. Jupatanakul, G. Dimopoulos, "An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity," eLife, vol. 6,DOI: 10.7554/eLife.28844, 2017.
[45] S. Thomas, J. Verma, M. Woolfit, S. L. O’Neill, "Wolbachia-mediated virus blocking in mosquito cells is dependent on XRN1-mediated viral RNA degradation and influenced by viral replication rate," PLoS Pathogens, vol. 14 no. 3, article e1006879,DOI: 10.1371/journal.ppat.1006879, 2018.
[46] X. Pan, G. Zhou, J. Wu, G. Bian, P. Lu, A. S. Raikhel, Z. Xi, "Wolbachia induces reactive oxygen species (ROS)-dependent activation of the toll pathway to control dengue virus in the mosquito Aedes aegypti," Proceedings of the National Academy of Sciences of the United States of America, vol. 109 no. 1, pp. E23-E31, DOI: 10.1073/pnas.1116932108, 2012.
[47] S. Asad, R. Parry, S. Asgari, "Upregulation of Aedes aegypti Vago1 by Wolbachia and its effect on dengue virus replication," Insect Biochemistry and Molecular Biology, vol. 92, pp. 45-52, DOI: 10.1016/j.ibmb.2017.11.008, 2018.
[48] X. Xiao, Y. Liu, X. Zhang, J. Wang, Z. Li, X. Pang, P. Wang, G. Cheng, "Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides," PLoS Pathogens, vol. 10 no. 4, article e1004027,DOI: 10.1371/journal.ppat.1004027, 2014.
[49] E. J. Houk, J. L. Hardy, S. B. Presser, L. D. Kramer, "Dissemination barriers for western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses," The American Journal of Tropical Medicine and Hygiene, vol. 30 no. 1, pp. 190-197, DOI: 10.4269/ajtmh.1981.30.190, 1981.
[50] P. R. Grimstad, S. L. Paulson, G. B. Craig, "Vector competence of Aedes hendersoni (Diptera: Culicidae) for La Crosse virus and evidence of a salivary-gland escape barrier," Journal of Medical Entomology, vol. 22 no. 4, pp. 447-453, DOI: 10.1093/jmedent/22.4.447, 1985.
[51] G. K. Christophides, E. Zdobnov, C. Barillas-Mury, E. Birney, S. Blandin, C. Blass, P. T. Brey, F. H. Collins, A. Danielli, G. Dimopoulos, C. Hetru, N. T. Hoa, J. A. Hoffmann, S. M. Kanzok, I. Letunic, E. A. Levashina, T. G. Loukeris, G. Lycett, S. Meister, K. Michel, L. F. Moita, H. M. Müller, M. A. Osta, S. M. Paskewitz, J. M. Reichhart, A. Rzhetsky, L. Troxler, K. D. Vernick, D. Vlachou, J. Volz, C. von Mering, J. Xu, L. Zheng, P. Bork, F. C. Kafatos, "Immunity-related genes and gene families in Anopheles gambiae," Science, vol. 298 no. 5591, pp. 159-165, DOI: 10.1126/science.1077136, 2002.
[52] M. Hoshino, F. Matsuzaki, Y.-i. Nabeshima, C. Hama, "hikaru genki, a CNS-specific gene identified by abnormal locomotion in drosophila, encodes a novel type of protein," Neuron, vol. 10 no. 3, pp. 395-407, DOI: 10.1016/0896-6273(93)90329-P, 1993.
[53] A. B. Barletta, L. R. Alves, M. C. L. Nascimento Silva, S. Sim, G. Dimopoulos, S. Liechocki, C. M. Maya-Monteiro, M. H. F. Sorgine, "Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus," Scientific Reports, vol. 6 no. 1,DOI: 10.1038/srep19928, 2016.
[54] J. C. Molloy, U. Sommer, M. R. Viant, S. P. Sinkins, "Wolbachia modulates lipid metabolism in Aedes albopictus Mosquito cells," Applied and Environmental Microbiology, vol. 82 no. 10, pp. 3109-3120, DOI: 10.1128/AEM.00275-16, 2016.
[55] M. Wu, L. V. Sun, J. Vamathevan, M. Riegler, R. Deboy, J. C. Brownlie, E. A. McGraw, W. Martin, C. Esser, N. Ahmadinejad, C. Wiegand, R. Madupu, M. J. Beanan, L. M. Brinkac, S. C. Daugherty, A. S. Durkin, J. F. Kolonay, W. C. Nelson, Y. Mohamoud, P. Lee, K. Berry, M. B. Young, T. Utterback, J. Weidman, W. C. Nierman, I. T. Paulsen, K. E. Nelson, H. Tettelin, S. L. O'Neill, J. A. Eisen, "Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements," PLoS Biology, vol. 2 no. 3,DOI: 10.1371/journal.pbio.0020069, 2004.
[56] N. B. Tjaden, S. M. Thomas, D. Fischer, C. Beierkuhnlein, "Extrinsic incubation period of dengue: knowledge, backlog, and applications of temperature dependence," PLoS Neglected Tropical Diseases, vol. 7 no. 6,DOI: 10.1371/journal.pntd.0002207, 2013.
[57] V. Huerta, Y. Ramos, A. Yero, D. Pupo, D. Martín, P. Toledo, N. Fleitas, S. Gallien, A. M. Martín, G. J. Márquez, Y. Pérez-Riverol, M. Sarría, O. Guirola, L. J. González, B. Domon, G. Chinea, "Novel interactions of domain III from the envelope glycoprotein of dengue 2 virus with human plasma proteins," Journal of Proteomics, vol. 131, pp. 205-213, DOI: 10.1016/j.jprot.2015.11.003, 2016.
[58] C. Cruz-Oliveira, J. M. Freire, T. M. Conceição, L. M. Higa, M. A. R. B. Castanho, A. T. da Poian, "Receptors and routes of dengue virus entry into the host cells," FEMS Microbiology Reviews, vol. 39 no. 2, pp. 155-170, DOI: 10.1093/femsre/fuu004, 2015.
[59] K. I. Hidari, T. Suzuki, "Dengue virus receptor," Medicine & Health, vol. 39, pp. S37-S43, DOI: 10.2149/tmh.2011-S03, 2011.
[60] N. Nanaware, A. Banerjee, S. M. Bagchi, P. Bagchi, A. Mukherjee, "Dengue virus infection: a tale of viral exploitations and host responses," Viruses, vol. 13 no. 10,DOI: 10.3390/v13101967, 2021.
[61] Y. Mori, T. Okabayashi, T. Yamashita, Z. Zhao, T. Wakita, K. Yasui, F. Hasebe, M. Tadano, E. Konishi, K. Moriishi, Y. Matsuura, "Nuclear localization of Japanese encephalitis virus core protein enhances viral replication," Journal of Virology, vol. 79 no. 6, pp. 3448-3458, DOI: 10.1128/JVI.79.6.3448-3458.2005, 2005.
[62] W.-k. Oh, J. Song, "Hsp70 functions as a negative regulator of West Nile virus capsid protein through direct interaction," Biochemical and Biophysical Research Communications, vol. 347 no. 4, pp. 994-1000, DOI: 10.1016/j.bbrc.2006.06.190, 2006.
[63] R. Bhuvanakantham, M. K. Chong, M. L. Ng, "Specific interaction of capsid protein and importin- α / β influences West Nile virus production," Biochemical and Biophysical Research Communications, vol. 389 no. 1, pp. 63-69, DOI: 10.1016/j.bbrc.2009.08.108, 2009.
[64] K. A. Hanley, J. J. Lee, J. E. Blaney, B. R. Murphy, S. S. Whitehead, "Paired charge-to-alanine mutagenesis of dengue virus type 4 NS5 generates mutants with temperature-sensitive, host range, and mouse attenuation phenotypes," Journal of Virology, vol. 76 no. 2, pp. 525-531, DOI: 10.1128/JVI.76.2.525-531.2002, 2002.
[65] R. J. Kuhn, W. Zhang, M. G. Rossmann, S. V. Pletnev, J. Corver, E. Lenches, C. T. Jones, S. Mukhopadhyay, P. R. Chipman, E. G. Strauss, T. S. Baker, J. H. Strauss, "Structure of dengue virus: implications for flavivirus organization, maturation, and fusion," Cell, vol. 108 no. 5, pp. 717-725, DOI: 10.1016/S0092-8674(02)00660-8, 2002.
[66] S. Welsch, S. Miller, I. Romero-Brey, A. Merz, C. K. E. Bleck, P. Walther, S. D. Fuller, C. Antony, J. Krijnse-Locker, R. Bartenschlager, "Composition and three-dimensional architecture of the dengue virus replication and assembly sites," Cell Host & Microbe, vol. 5 no. 4, pp. 365-375, DOI: 10.1016/j.chom.2009.03.007, 2009.
[67] E. G. Westaway, A. A. Khromykh, J. M. Mackenzie, "Nascent Flavivirus RNA Colocalized _in Situ_ with Double-Stranded RNA in Stable Replication Complexes," Virology, vol. 258 no. 1, pp. 108-217, DOI: 10.1006/viro.1999.9683, 1999.
[68] V. Raquin, L. Lambrechts, "Dengue virus replicates and accumulates in _Aedes aegypti_ salivary glands," Virology, vol. 507, pp. 75-81, DOI: 10.1016/j.virol.2017.04.009, 2017.
[69] C. V. Filomatori, M. F. Lodeiro, D. E. Alvarez, M. M. Samsa, L. Pietrasanta, A. V. Gamarnik, "A 5' RNA element promotes dengue virus RNA synthesis on a circular genome," Genes & Development, vol. 20 no. 16, pp. 2238-2249, DOI: 10.1101/gad.1444206, 2006.
[70] S.-n. Pattanakitsakul, J. Poungsawai, R. Kanlaya, S. Sinchaikul, S.-T. Chen, V. Thongboonkerd, "Association of Alix with late endosomal lysobisphosphatidic acid is important for dengue virus infection in human endothelial cells," Journal of Proteome Research, vol. 9 no. 9, pp. 4640-4648, DOI: 10.1021/pr100357f, 2010.
[71] B. Londono-Renteria, A. Troupin, M. J. Conway, D. Vesely, M. Ledizet, C. M. Roundy, E. Cloherty, S. Jameson, D. Vanlandingham, S. Higgs, E. Fikrig, T. M. Colpitts, "Dengue virus infection of Aedes aegypti requires a putative cysteine rich venom protein," PLoS Pathogens, vol. 11 no. 10, article e1005202,DOI: 10.1371/journal.ppat.1005202, 2015.
[72] T. W. Scott, A. C. Morrison, "Aedes aegypti density and the risk of dengue-virus. Ecological aspects for application of genetically modified mosquitoes," FRONTIS, vol. 2, 2003.
[73] C. S. H. Teo, J. J. H. Chu, "Cellular vimentin regulates construction of dengue virus replication complexes through interaction with NS4A protein," Journal of Virology, vol. 88 no. 4, pp. 1897-1913, DOI: 10.1128/JVI.01249-13, 2014.
[74] S. M. Eick, A. P. Dale, B. McKay, C. Lawrence, M. H. Ebell, J. F. Cordero, M. Welton, "Seroprevalence of dengue and Zika virus in blood donations: A systematic review," Transfusion Medicine Reviews, vol. 33 no. 1, pp. 35-42, DOI: 10.1016/j.tmrv.2018.10.001, 2019.
[75] R. Kulkarni, D. Tiraki, D. Wani, A. C. Mishra, V. A. Arankalle, "Risk of transfusion-associated dengue: screening of blood donors from Pune, western India," Transfusion, vol. 59 no. 2, pp. 458-462, DOI: 10.1111/trf.15007, 2019.
[76] A. Guzman, R. E. Istúriz, "Update on the global spread of dengue," International Journal of Antimicrobial Agents, vol. 36, pp. S40-S42, DOI: 10.1016/j.ijantimicag.2010.06.018, 2010.
[77] A. Goel, D. Patel, K. Lakhani, S. Agarwal, A. Agarwal, S. Singla, R. Agarwal, "Dengue fever-a dangerous foe," Journal Indian Academy of Clinical Medicine, vol. 5, pp. 247-258, 2004.
[78] K. I. P. J. Hidari, N. Takahashi, M. Arihara, M. Nagaoka, K. Morita, T. Suzuki, "Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga," Biochemical and Biophysical Research Communications, vol. 376 no. 1, pp. 91-95, DOI: 10.1016/j.bbrc.2008.08.100, 2008.
[79] P. D. Uchil, V. Satchidanandam, "Architecture of the Flaviviral Replication Complex:," The Journal of Biological Chemistry, vol. 278 no. 27, pp. 24388-24398, DOI: 10.1074/jbc.M301717200, 2003.
[80] I. Kurane, B. L. Innis, S. Nimmannitya, A. Nisalak, F. A. Ennis, A. Meager, "High levels of interferon alpha in the sera of children with dengue virus infection," The American Journal of Tropical Medicine and Hygiene, vol. 48 no. 2, pp. 222-229, DOI: 10.4269/ajtmh.1993.48.222, 1993.
[81] I. Kurane, B. L. Innis, S. Nimmannitya, A. Nisalak, A. Meager, J. Janus, F. A. Ennis, "Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue," The Journal of Clinical Investigation, vol. 88 no. 5, pp. 1473-1480, DOI: 10.1172/JCI115457, 1991.
[82] M. C. Shivanthan, S. Rajapakse, "Dengue and calcium," International Journal of Critical Illness and Injury Science, vol. 4 no. 4, pp. 314-316, DOI: 10.4103/2229-5151.147538, 2014.
[83] G. P. Zaloga, B. Chernow, "The multifactorial basis for hypocalcemia during sepsis. Studies of the parathyroid hormone-vitamin D axis," Annals of Internal Medicine, vol. 107 no. 1, pp. 36-41, DOI: 10.7326/0003-4819-107-1-36, 1987.
[84] R. Bravo, V. Parra, D. Gatica, A. E. Rodriguez, N. Torrealba, F. Paredes, Z. V. Wang, A. Zorzano, J. A. Hill, E. Jaimovich, A. F. G. Quest, S. Lavandero, "Chapter Five - Endoplasmic Reticulum and the Unfolded Protein Response: Dynamics and Metabolic Integration," International Review of Cell and Molecular Biology, 2013.
[85] N. Meng, X. Ren, G. Santagiuliana, L. Ventura, H. Zhang, J. Wu, H. Yan, M. J. Reece, E. Bilotti, "Ultrahigh β -phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors," Nature Communications, vol. 10 no. 1,DOI: 10.1038/s41467-019-12391-3, 2019.
[86] P. Bautista-Carbajal, R. Soto-Acosta, A. H. Angel-Ambrocio, M. Cervantes-Salazar, C. I. Loranca-Vega, M. Herrera-Martínez, R. M. del Angel, "The calmodulin antagonist W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride) inhibits DENV infection in Huh-7 cells," Virology, vol. 501, pp. 188-198, DOI: 10.1016/j.virol.2016.12.004, 2017.
[87] J. Li, R. Huang, W. Liao, Z. Chen, S. Zhang, R. Huang, "Dengue virus utilizes calcium modulating cyclophilin-binding ligand to subvert apoptosis," Biochemical and Biophysical Research Communications, vol. 418 no. 4, pp. 622-627, DOI: 10.1016/j.bbrc.2012.01.050, 2012.
[88] R. George, L. Lum, Clinical Spectrum of Dengue Infection. Dengue and Dengue Haemorrhagic Fever, 1997.
[89] I.-K. Lee, J.-W. Liu, K. D. Yang, "Fatal dengue hemorrhagic fever in adults: emphasizing the evolutionary pre-fatal clinical and laboratory manifestations," PLoS Neglected Tropical Diseases, vol. 6 no. 2, article e1532,DOI: 10.1371/journal.pntd.0001532, 2012.
[90] T. P. Johnson, H. B. Larman, M.‐. H. Lee, S. S. Whitehead, J. Kowalak, C. Toro, C. C. Lau, J. Kim, K. R. Johnson, L. B. Reoma, A. Faustin, C. A. Pardo, S. Kottapalli, J. Howard, D. Monaco, J. Weisfeld‐Adams, C. Blackstone, S. Galetta, M. Snuderl, W. A. Gahl, I. Kister, A. Nath, "Chronic dengue virus panencephalitis in a patient with progressive dementia with extrapyramidal features," Annals of Neurology, vol. 86 no. 5, pp. 695-703, DOI: 10.1002/ana.25588, 2019.
[91] J. Suppiah, S.-M. Ching, S. Amin-Nordin, L.-A. Mat-Nor, N.-A. Ahmad-Najimudin, G. K.-K. Low, M.-Z. Abdul-Wahid, R. Thayan, H.-Y. Chee, "Clinical manifestations of dengue in relation to dengue serotype and genotype in Malaysia: A retrospective observational study," PLoS Neglected Tropical Diseases, vol. 12 no. 9,DOI: 10.1371/journal.pntd.0006817, 2018.
[92] F. Giovannoni, M. F. Ladelfa, M. Monte, D. A. Jans, P. Hemmerich, C. García, "Dengue non-structural protein 5 polymerase complexes with promyelocytic leukemia protein (PML) isoforms III and IV to disrupt PML-nuclear bodies in infected cells," Frontiers in Cellular and Infection Microbiology, vol. 9, pp. 284-284, DOI: 10.3389/fcimb.2019.00284, 2019.
[93] Y.-S. Kao, C.-Y. Yu, H.-J. Huang, S.-M. Tien, W.-Y. Wang, M. Yang, R. Anderson, T.-M. Yeh, Y.-S. Lin, S.-W. Wan, "Combination of modified NS1 and NS3 as a novel vaccine strategy against dengue virus infection," Journal of Immunology, vol. 203 no. 7, pp. 1909-1917, DOI: 10.4049/jimmunol.1900136, 2019.
[94] D. S. Burke, R. M. N. Scott, D. E. Johnson, A. Nisalak, "A prospective study of dengue infections in Bangkok," The American Journal of Tropical Medicine and Hygiene, vol. 38 no. 1, pp. 172-180, DOI: 10.4269/ajtmh.1988.38.172, 1988.
[95] T. P. Endy, S. Chunsuttiwat, A. Nisalak, D. H. Libraty, S. Green, A. L. Rothman, D. W. Vaughn, F. A. Ennis, "Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kamphaeng Phet, Thailand," American Journal of Epidemiology, vol. 156 no. 1, pp. 40-51, DOI: 10.1093/aje/kwf005, 2002.
[96] S. Datta, C. Wattal, "Dengue NS1 antigen detection: a useful tool in early diagnosis of dengue virus infection," Indian Journal of Medical Microbiology, vol. 28 no. 2, pp. 107-110, DOI: 10.4103/0255-0857.62484, 2010.
[97] P. Dussart, B. Labeau, G.̀. Lagathu, P. Louis, M. R. T. Nunes, S. G. Rodrigues, C.́. Storck-Herrmann, R. Cesaire, J. Morvan, M. Flamand, L. Baril, "Evaluation of an enzyme immunoassay for detection of dengue virus NS1 antigen in human serum," Clinical and Vaccine Immunology, vol. 13 no. 11, pp. 1185-1189, DOI: 10.1128/CVI.00229-06, 2006.
[98] A. Khan, "Frequency and clinical presentation of dengue fever at tertiary Care Hospital of Hyderabad/Jamshoro," Journal of the Liaquat University of Medical and Health Sciences, vol. 9, pp. 88-94, 2010.
[99] D. H. Libraty, P. R. Young, D. Pickering, T. P. Endy, S. Kalayanarooj, S. Green, D. W. Vaughn, A. Nisalak, F. A. Ennis, A. L. Rothman, "High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever," The Journal of Infectious Diseases, vol. 186 no. 8, pp. 1165-1168, DOI: 10.1086/343813, 2002.
[100] P.-Y. Shu, L.-K. Chen, S.-F. Chang, Y.-Y. Yueh, L. Chow, L.-J. Chien, C. Chin, T.-H. Lin, J.-H. Huang, "Comparison of capture immunoglobulin M (IgM) and IgG enzyme-linked immunosorbent assay (ELISA) and nonstructural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections," Clinical and Diagnostic Laboratory Immunology, vol. 10 no. 4, pp. 622-630, DOI: 10.1128/cdli.10.4.622-630.2003, 2003.
[101] N. Butt, A. Abbassi, S. M. Munir, S. M. Ahmad, Q. H. Sheikh, "Haematological and biochemical indicators for the early diagnosis of dengue viral infection," Journal of the College of Physicians and Surgeons–Pakistan, vol. 18 no. 5, pp. 282-285, 2008.
[102] D. A. Muller, A. C. I. Depelsenaire, P. R. Young, "Clinical and laboratory diagnosis of dengue virus infection," The Journal of Infectious Diseases, vol. 215, pp. S89-s95, DOI: 10.1093/infdis/jiw649, 2017.
[103] A. Wilder-Smith, "Dengue vaccine development by the year 2020: challenges and prospects," Current Opinion in Virology, vol. 43, pp. 71-78, DOI: 10.1016/j.coviro.2020.09.004, 2020.
[104] N. G. Gratz, "Critical review of the vector status of Aedes albopictus," Medical and Veterinary Entomology, vol. 18 no. 3, pp. 215-227, DOI: 10.1111/j.0269-283X.2004.00513.x, 2004.
[105] A. Wilder-Smith, "Dengue vaccine development: status and future," Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, vol. 63 no. 1, pp. 40-44, DOI: 10.1007/s00103-019-03060-3, 2020.
[106] G. Clark, M. F. Suárez, "Mosquito vector control and biology in Latin America--a second symposium," Journal of the American Mosquito Control Association, vol. 8 no. 3, pp. 305-317, 1992.
[107] N. C. Tan, S. Ho, "Treat-to-target approach in managing modifiable risk factors of patients with coronary heart disease in primary care in Singapore: what are the issues?," Asia Pacific Family Medicine, vol. 10 no. 1,DOI: 10.1186/1447-056X-10-12, 2011.
[108] U. Thisyakorn, C. Thisyakorn, "Latest developments and future directions in dengue vaccines," Therapeutic Advances in Vaccines, vol. 2 no. 1,DOI: 10.1177/2051013613507862, 2014.
[109] L. E. Yauch, S. Shresta, "Dengue virus vaccine development," Advances in Virus Research, vol. 88, pp. 315-372, DOI: 10.1016/B978-0-12-800098-4.00007-6, 2014.
[110] J. E. Osorio, C. Y.-H. Huang, R. M. Kinney, D. T. Stinchcomb, "Development of DENVax: a chimeric dengue-2 PDK-53-based tetravalent vaccine for protection against dengue fever," Vaccine, vol. 29 no. 42, pp. 7251-7260, DOI: 10.1016/j.vaccine.2011.07.020, 2011.
[111] L. M. Schwartz, M. E. Halloran, A. P. Durbin, I. M. Longini, "The dengue vaccine pipeline: implications for the future of dengue control," Vaccine, vol. 33 no. 29, pp. 3293-3298, DOI: 10.1016/j.vaccine.2015.05.010, 2015.
[112] S. Swaminathan, N. Khanna, "Dengue vaccine development: global and Indian scenarios," International Journal of Infectious Diseases, vol. 84, pp. S80-S86, DOI: 10.1016/j.ijid.2019.01.029, 2019.
[113] M. A. McArthur, M. B. Sztein, R. Edelman, "Dengue vaccines: recent developments, ongoing challenges and current candidates," Expert Review of Vaccines, vol. 12 no. 8, pp. 933-953, DOI: 10.1586/14760584.2013.815412, 2013.
[114] N. K. Tripathi, A. Shrivastava, "Recent developments in recombinant protein–based dengue vaccines," Frontiers in Immunology, vol. 9,DOI: 10.3389/fimmu.2018.01919, 2018.
[115] J. Sharifi-Rad, S. Kamiloglu, B. Yeskaliyeva, A. Beyatli, M. A. Alfred, B. Salehi, D. Calina, A. O. Docea, M. Imran, N. V. A. Kumar, M. E. Romero-Román, A. Maroyi, M. Martorell, "Pharmacological activities of psoralidin: a comprehensive review of the molecular mechanisms of action," Frontiers in Pharmacology, vol. 11,DOI: 10.3389/fphar.2020.571459, 2020.
[116] J. Sharifi-Rad, C. Quispe, J. Herrera-Bravo, M. Martorell, F. Sharopov, T. B. Tumer, B. Kurt, C. Lankatillake, A. O. Docea, A. C. Moreira, D. A. Dias, M. F. Mahomoodally, D. Lobine, N. Cruz-Martins, M. Kumar, D. Calina, "A pharmacological perspective on plant-derived bioactive molecules for epilepsy," Neurochemical Research, vol. 46 no. 9, pp. 2205-2225, DOI: 10.1007/s11064-021-03376-0, 2021.
[117] D. Tsoukalas, O. Zlatian, M. Mitroi, E. Renieri, A. Tsatsakis, B. N. Izotov, F. Burada, S. Sosoi, E. Burada, A. M. Buga, I. Rogoveanu, A. O. Docea, D. Calina, "A novel nutraceutical formulation can improve motor activity and decrease the stress level in a murine model of middle-age animals," Journal of Clinical Medicine, vol. 10 no. 4,DOI: 10.3390/jcm10040624, 2021.
[118] B. Salehi, A. Rescigno, T. Dettori, D. Calina, A. O. Docea, L. Singh, F. Cebeci, B. Özçelik, M. Bhia, A. D. Beirami, J. Sharifi-Rad, F. Sharopov, W. C. Cho, N. Martins, "Avocado-soybean unsaponifiables: a panoply of potentialities to be exploited," Biomolecules, vol. 10 no. 1,DOI: 10.3390/biom10010130, 2020.
[119] B. Salehi, M. S. Shetty, N. V. Anil Kumar, J. Živković, D. Calina, A. O. Docea, S. Emamzadeh-Yazdi, C. S. Kılıç, T. Goloshvili, S. Nicola, G. Pignata, F. Sharopov, M. del Mar Contreras, W. C. Cho, N. Martins, J. Sharifi-Rad, "Veronica plants-drifting from farm to traditional healing, food application, and phytopharmacology," Molecules, vol. 24 no. 13,DOI: 10.3390/molecules24132454, 2019.
[120] T. A. Sani, "Cytotoxic and APOPTOGENIC properties of DRACOCEPHALUM KOTSCHYI aerial part different fractions on CALU-6 and MEHR-80 lung cancer cell lines," Farmácia, vol. 65, pp. 189-199, 2017.
[121] W. L. Jiang, X. L. Luo, S. J. Kuang, "Effects of Alternanthera philoxeroides Griseb against dengue virus in vitro," Di Yi Jun Yi Da Xue Xue Bao, vol. 25 no. 4, pp. 454-456, 2005.
[122] M. M. Parida, C. Upadhyay, G. Pandya, A. M. Jana, "Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication," Journal of Ethnopharmacology, vol. 79 no. 2, pp. 273-278, DOI: 10.1016/S0378-8741(01)00395-6, 2002.
[123] T. S. Kiat, R. Pippen, R. Yusof, H. Ibrahim, N. Khalid, N. A. Rahman, "Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, _Boesenbergia rotunda_ (L.), towards dengue-2 virus NS3 protease," Bioorganic & Medicinal Chemistry Letters, vol. 16 no. 12, pp. 3337-3340, DOI: 10.1016/j.bmcl.2005.12.075, 2006.
[124] N. Ahmad, H. Fazal, M. Ayaz, B. H. Abbasi, I. Mohammad, L. Fazal, "Dengue fever treatment with Carica papaya leaves extracts," Asian Pacific Journal of Tropical Biomedicine, vol. 1 no. 4, pp. 330-333, DOI: 10.1016/S2221-1691(11)60055-5, 2011.
[125] L. Talarico, C. Pujol, R. Zibetti, P. Faria, M. Noseda, M. Duarte, E. Damonte, "The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell," Antiviral Research, vol. 66 no. 2-3, pp. 103-110, DOI: 10.1016/j.antiviral.2005.02.001, 2005.
[126] L. I. C. Tang, A. P. K. Ling, R. Y. Koh, S. M. Chye, K. G. L. Voon, "Screening of anti-dengue activity in methanolic extracts of medicinal plants," BMC Complementary and Alternative Medicine, vol. 12 no. 1,DOI: 10.1186/1472-6882-12-3, 2012.
[127] N. Klawikkan, "Effect of Thai medicinal plant extracts against dengue virus in vitro," MU J Pharm, vol. 38, pp. 13-18, 2011.
[128] C. A. Pujol, J. M. Estevez, M. J. Carlucci, M. Ciancia, A. S. Cerezo, E. B. Damonte, "Novel DL-galactan hybrids from the red seaweed Gymnogongrus torulosus are potent inhibitors of herpes simplex virus and dengue virus," Antiviral Chemistry & Chemotherapy, vol. 13 no. 2, pp. 83-89, DOI: 10.1177/095632020201300202, 2002.
[129] R. M. Lopez, R. E. Ocazionez, J. R. Martinez, E. E. Stashenko, "Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro," Annals of Clinical Microbiology and Antimicrobials, vol. 8 no. 1,DOI: 10.1186/1476-0711-8-8, 2009.
[130] P. C. De Sf-Tischer, L. B. Talarico, M. D. Noseda, S. M. Guimarães, E. B. Damonte, M. E. Duarte, "Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus," Carbohydrate Polymers, vol. 63, pp. 459-465, 2006.
[131] L. Ono, W. Wollinger, I. M. Rocco, T. L. M. Coimbra, P. A. J. Gorin, M.-R. Sierakowski, "In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain)," Antiviral Research, vol. 60 no. 3, pp. 201-208, DOI: 10.1016/S0166-3542(03)00175-X, 2003.
[132] S. L. A. Kadir, H. Yaakob, R. M. Zulkifli, "Potential anti-dengue medicinal plants: a review," Journal of Natural Medicines, vol. 67 no. 4, pp. 677-689, DOI: 10.1007/s11418-013-0767-y, 2013.
[133] S. Y. Muliawan, L. S. Kit, S. Devi, O. Hashim, R. Yusof, "Inhibitory potential of Quercus lusitanica extract on dengue virus type 2 replication," The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 37, pp. 132-135, 2006.
[134] I. Sánchez, F. Gómez-Garibay, J. Taboada, B. H. Ruiz, "Antiviral effect of flavonoids on the dengue virus," Phytotherapy Research, vol. 14 no. 2, pp. 89-92, DOI: 10.1002/(SICI)1099-1573(200003)14:2<89::AID-PTR569>3.0.CO;2-C, 2000.
[135] M. Srivastava, V. P. Kapoor, "Seed galactomannans: an overview," Chemistry & Biodiversity, vol. 2, pp. 295-317, DOI: 10.1002/cbdv.200590013, 2005.
[136] S. R. I. N. Reis, L. M. M. Valente, A. L. Sampaio, A. C. Siani, M. Gandini, E. L. Azeredo, L. A. D'Avila, J. L. Mazzei, M. D. G. M. Henriques, C. F. Kubelka, "Immunomodulating and antiviral activities of _Uncaria tomentosa_ on human monocytes infected with Dengue Virus-2," International Immunopharmacology, vol. 8 no. 3, pp. 468-476, DOI: 10.1016/j.intimp.2007.11.010, 2008.
[137] C. Rees, J. Costin, R. Fink, M. Mcmichael, K. Fontaine, S. Isern, S. Michael, "In vitro inhibition of dengue virus entry by _p_ -sulfoxy-cinnamic acid and structurally related combinatorial chemistries," Antiviral Research, vol. 80 no. 2, pp. 135-142, DOI: 10.1016/j.antiviral.2008.05.007, 2008.
[138] R. Rosmalena, B. Elya, B. E. Dewi, F. Fithriyah, H. Desti, M. Angelina, M. Hanafi, P. D. Lotulung, V. D. Prasasty, D. Seto, "The Antiviral Effect of Indonesian Medicinal Plant Extracts against Dengue Virus In Vitro and in Silico," Pathogens, vol. 8 no. 2,DOI: 10.3390/pathogens8020085, 2019.
[139] J. G. Haddad, A. C. Koishi, A. Gaudry, C. Nunes Duarte dos Santos, W. Viranaicken, P. Desprès, C. el Kalamouni, "Doratoxylon apetalum, an indigenous medicinal plant from Mascarene Islands, is a potent inhibitor of Zika and dengue virus infection in human cells," International Journal of Molecular Sciences, vol. 20 no. 10,DOI: 10.3390/ijms20102382, 2019.
[140] E. Clain, J. G. Haddad, A. C. Koishi, L. Sinigaglia, W. Rachidi, P. N. Desprès, C. Duarte dos Santos, P. Guiraud, N. Jouvenet, C. El Kalamouni, "The polyphenol-rich extract from Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island, inhibits the early stages of dengue and Zika virus infection," International Journal of Molecular Sciences, vol. 20 no. 8,DOI: 10.3390/ijms20081860, 2019.
[141] X. Yao, Y. Ling, S. Guo, W. Wu, S. He, Q. Zhang, M. Zou, K. S. Nandakumar, X. Chen, S. Liu, "Tatanan A from the _Acorus calamus L_. root inhibited dengue virus proliferation and infections," Phytomedicine, vol. 42, pp. 258-267, DOI: 10.1016/j.phymed.2018.03.018, 2018.
[142] E. A. Inocente, M. Shaya, N. Acosta, L. H. Rakotondraibe, P. M. Piermarini, "A natural agonist of mosquito TRPA1 from the medicinal plant Cinnamosma fragrans that is toxic, antifeedant, and repellent to the yellow fever mosquito Aedes aegypti," PLoS Neglected Tropical Diseases, vol. 12 no. 2, article e0006265,DOI: 10.1371/journal.pntd.0006265, 2018.
[143] R. Ishwarya, B. Vaseeharan, R. Anuradha, R. Rekha, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, G. Benelli, "Eco-friendly fabrication of Ag nanostructures using the seed extract of _Pedalium murex_ , an ancient Indian medicinal plant: Histopathological effects on the Zika virus vector _Aedes aegypti_ and inhibition of biofilm- forming pathogenic bacteria," Journal of Photochemistry and Photobiology. B, vol. 174, pp. 133-143, DOI: 10.1016/j.jphotobiol.2017.07.026, 2017.
[144] F. M. Salinas, L. Vázquez, M. V. Gentilini, A. O’Donohoe, E. Regueira, M. S. N. Jodar, M. Viegas, F. M. Michelini, G. Hermida, L. E. Alché, C. A. Bueno, "Aesculus hippocastanum _ L. seed extract shows virucidal and antiviral activities against respiratory syncytial virus (RSV) and reduces lung inflammation _ in vivo," Antiviral Research, vol. 164,DOI: 10.1016/j.antiviral.2019.01.018, 2019.
[145] L. G. Fialho, V. P. da Silva, S. R. N. I. Reis, E. L. Azeredo, M. A. C. Kaplan, M. R. Figueiredo, C. F. Kubelka, "Antiviral and Immunomodulatory Effects of Norantea brasiliensis Choisy on Dengue Virus-2," Intervirology, vol. 59 no. 4, pp. 217-227, DOI: 10.1159/000455855, 2017.
[146] V. D. Dwivedi, I. P. Tripathi, S. K. Mishra, "In silico evaluation of inhibitory potential of triterpenoids from Azadirachta indica against therapeutic target of dengue virus, NS2B-NS3 protease," Journal of Vector Borne Diseases, vol. 53 no. 2, pp. 156-161, 2016.
[147] E. E. Ajaegbu, S. P. Danga, I. U. Chijoke, F. B. Okoye, "Mosquito adulticidal activity of the leaf extracts of Spondias mombin L. against Aedes aegypti L. and isolation of active principles," Journal of Vector Borne Diseases, vol. 53 no. 1, pp. 17-22, 2016.
[148] D. Champakaew, A. Junkum, U. Chaithong, A. Jitpakdi, D. Riyong, R. Sanghong, J. Intirach, R. Muangmoon, A. Chansang, B. Tuetun, B. Pitasawat, "Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand," Parasitology Research, vol. 114 no. 6, pp. 2187-2198, DOI: 10.1007/s00436-015-4409-z, 2015.
[149] S. H. Lee, Y. Q. Tang, A. Rathkrishnan, S. M. Wang, K. C. Ong, R. Manikam, B. J. Payne, I. B. Jaganath, S. D. Sekaran, "Effects of cocktail of four local Malaysian medicinal plants (Phyllanthus spp.) against dengue virus 2," BMC Complementary and Alternative Medicine, vol. 13 no. 1,DOI: 10.1186/1472-6882-13-192, 2013.
[150] P. M. Kumar, K. Murugan, K. Kovendan, C. Panneerselvam, K. P. Kumar, D. Amerasan, J. Subramaniam, K. Kalimuthu, T. Nataraj, "Mosquitocidal activity of solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes aegypti," Parasitology Research, vol. 111 no. 2, pp. 609-618, DOI: 10.1007/s00436-012-2876-z, 2012.
[151] G. Marimuthu, S. Rajamohan, R. Mohan, Y. Krishnamoorthy, "Larvicidal and ovicidal properties of leaf and seed extracts of Delonix elata (L.) gamble (family: Fabaceae) against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti Linn.) (Diptera: Culicidae) vector mosquitoes," Parasitology Research, vol. 111 no. 1, pp. 65-77, DOI: 10.1007/s00436-011-2802-9, 2012.
[152] K. Kovendan, K. Murugan, S. Vincent, "Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae)," Parasitology Research, vol. 110 no. 2, pp. 571-581, DOI: 10.1007/s00436-011-2525-y, 2012.
[153] J. Odda, S. Kristensen, J. Kabasa, P. Waako, "Larvicidal activity of Combretum collinum Fresen against Aedes aegypti," Journal of Vector Borne Diseases, vol. 45 no. 4, pp. 321-324, 2008.
[154] N. Chowdhury, A. Ghosh, G. Chandra, "Mosquito Larvicidal Activities Of Solanum Villosum Berry Extract Against The Dengue Vector Stegomyia Aegypti," Bmc Complementary And Alternative Medicine, vol. 8 no. 1,DOI: 10.1186/1472-6882-8-10, 2008.
[155] V. Leardkamolkarn, W. Sirigulpanit, C. Phurimsak, S. Kumkate, L. Himakoun, B. Sripanidkulchai, "The inhibitory actions of houttuynia cordata aqueous extract on dengue virus and dengue-infected cells," Journal of Food Biochemistry, vol. 36 no. 1, pp. 86-92, DOI: 10.1111/j.1745-4514.2010.00514.x, 2012.
[156] V. M. Quintana, L. E. Piccini, J. D. Panozzo Zénere, E. B. Damonte, M. A. Ponce, V. Castilla, "Antiviral activity of natural and synthetic β -carbolines against dengue virus," Antiviral Research, vol. 134, pp. 26-33, DOI: 10.1016/j.antiviral.2016.08.018, 2016.
[157] K. H. Chiow, M. C. Phoon, T. Putti, B. K. H. Tan, V. T. Chow, "Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection," Asian Pacific Journal of Tropical Medicine, vol. 9 no. 1,DOI: 10.1016/j.apjtm.2015.12.002, 2016.
[158] Á. Vázquez-Calvo, N. Jiménez de Oya, M. A. Martín-Acebes, E. Garcia-Moruno, J. C. Saiz, "Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the Flaviviruses West Nile virus, Zika virus, and dengue virus," Frontiers in Microbiology, vol. 8, pp. 1314-1314, DOI: 10.3389/fmicb.2017.01314, 2017.
[159] A. Paemanee, A. Hitakarun, S. Roytrakul, D. R. Smith, "Screening of melatonin, α -tocopherol, folic acid, acetyl-L-carnitine and resveratrol for anti-dengue 2 virus activity," BMC Research Notes, vol. 11 no. 1,DOI: 10.1186/s13104-018-3417-3, 2018.
[160] A. Hall, A. Troupin, B. Londono-Renteria, T. Colpitts, "Garlic organosulfur compounds reduce inflammation and oxidative stress during dengue virus infection," Viruses, vol. 9 no. 7,DOI: 10.3390/v9070159, 2017.
[161] R. Batool, E. Aziz, T. Mahmood, B. K. H. Tan, V. T. K. Chow, "Inhibitory activities of extracts ofRumex dentatus, Commelina benghalensis, Ajuga bracteosa, Ziziphus mauritianaas well as their compounds of gallic acid and emodin against dengue virus," Asian Pacific Journal of Tropical Medicine, vol. 11 no. 4,DOI: 10.4103/1995-7645.231466, 2018.
[162] S. Frabasile, A. C. Koishi, D. Kuczera, G. F. Silveira, W. A. Verri, C. N. Duarte dos Santos, J. Bordignon, "The citrus flavanone naringenin impairs dengue virus replication in human cells," Scientific Reports, vol. 7 no. 1, pp. 41864-41864, DOI: 10.1038/srep41864, 2017.
[163] N. Z. Wahab, N. Ibrahim, M. K. Kamarudin, F. Lananan, H. Juahir, A. Ghazali, A. I. Yusra, "Cytotoxicity and antiviral activity of Annona muricata aqueous leaves extract against dengue virus type 2," Journal of Fundamental and Applied Sciences, vol. 10, pp. 580-589, 2018.
[164] J. Euanorasetr, B. Intra, N. Thunmrongsiri, J. Limthongkul, S. Ubol, A. Anuegoonpipat, T. Kurosu, K. Ikuta, T. Nihira, W. Panbangred, "In vitro antiviral activity of spirotetronate compounds against dengue virus serotype 2," The Journal of General and Applied Microbiology, vol. 65 no. 4, pp. 197-203, DOI: 10.2323/jgam.2018.10.001, 2019.
[165] N. P. Castro, M. C. Flechas, R. Ocazionez, E. Stashenko, J. Olivero-Verbel, "Potential interaction of components from essential oils with dengue virus proteins," Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas, vol. 14, pp. 141-155, 2015.
[166] J. Jain, A. Kumar, V. Narayanan, R. S. Ramaswamy, P. Sathiyarajeswaran, M. S. S. Devi, M. Kannan, S. Sunil, "Antiviral activity of ethanolic extract of _Nilavembu Kudineer_ against dengue and chikungunya virus through _in vitro_ evaluation," Journal of Ayurveda and Integrative Medicine, vol. 11 no. 3, pp. 329-335, DOI: 10.1016/j.jaim.2018.05.006, 2020.
[167] N. Z. Wahab, N. Ibrahim, M. K. Kamarudin, F. Lananan, H. Juahir, A. Ghazali, "In vitro antiviral activity of Orthosiphon stamineus extract against dengue virus type 2," Journal of Fundamental and Applied Sciences, vol. 10, pp. 541-551, 2018.
[168] V. M. Quintana, B. Selisko, J. E. Brunetti, C. Eydoux, J. C. Guillemot, B. Canard, E. B. Damonte, J. G. Julander, V. Castilla, "Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses," Antiviral Research, vol. 176,DOI: 10.1016/j.antiviral.2020.104749, 2020.
[169] H. A. Rothan, H. Bahrani, N. Rahman, R. Yusof, "Identification of natural antimicrobial agents to treat dengue infection: in vitro analysis of latarcin peptide activity against dengue virus," BMC Microbiology, vol. 14 no. 1,DOI: 10.1186/1471-2180-14-140, 2014.
[170] D. Diwaker, K. P. Mishra, L. Ganju, S. B. Singh, "Rhodiola inhibits dengue virus multiplication by inducing innate immune response genes RIG-I, MDA5 and ISG in human monocytes," Archives of Virology, vol. 159 no. 8, pp. 1975-1986, DOI: 10.1007/s00705-014-2028-0, 2014.
[171] M. Ichsyani, A. Ridhanya, M. Risanti, H. Desti, R. Ceria, D. H. Putri, T. M. Sudiro, B. E. Dewi, "Antiviral effects ofCurcuma longaL. against dengue virus In Vitro and In Vivo," IOP Conference Series: Earth and Environmental Science, vol. 101,DOI: 10.1088/1755-1315/101/1/012005, 2017.
[172] C. da Silva Mello, L. M. M. Valente, T. Wolff, R. S. Lima-Junior, L. G. Fialho, C. F. Marinho, E. L. Azeredo, L. M. Oliveira-Pinto, R. de Cássia Alves Pereira, A. C. Siani, C. F. Kubelka, "Decrease in dengue virus-2 infection and reduction of cytokine/chemokine production by Uncaria guianensis in human hepatocyte cell line Huh-7," Memórias do Instituto Oswaldo Cruz, vol. 112 no. 6, pp. 458-468, DOI: 10.1590/0074-02760160323, 2017.
[173] V. D. Muller, R. O. Soares, N. N. dos Santos-Junior, A. C. Trabuco, A. C. Cintra, L. T. Figueiredo, A. Caliri, S. V. Sampaio, V. H. Aquino, "Phospholipase A2 isolated from the venom of Crotalus durissus terrificus inactivates dengue virus and other enveloped viruses by disrupting the viral envelope," PLoS One, vol. 9 no. 11, article e112351,DOI: 10.1371/journal.pone.0112351, 2014.
[174] M. Diosa-Toro, B. Troost, D. van de Pol, A. M. Heberle, S. Urcuqui-Inchima, K. Thedieck, J. M. Smit, "Tomatidine, a novel antiviral compound towards dengue virus," Antiviral Research, vol. 161, pp. 90-99, DOI: 10.1016/j.antiviral.2018.11.011, 2019.
[175] P. Lavanya, S. Ramaiah, A. Anbarasu, "Computational analysis reveal inhibitory action of nimbin against dengue viral envelope protein," Virus, vol. 26 no. 4, pp. 243-254, DOI: 10.1007/s13337-015-0280-x, 2015.
[176] P. R. Zanello, A. C. Koishi, C. . O. Rezende Júnior, L. A. Oliveira, A. A. Pereira, M. V. de Almeida, C. N. Duarte dos Santos, J. Bordignon, "Quinic acid derivatives inhibit dengue virus replication in vitro," Virology Journal, vol. 12 no. 1,DOI: 10.1186/s12985-015-0443-9, 2015.
[177] B. E. Dewi, M. Angelina, F. Nuwwaaridya, H. Desti, T. M. Sudiro, "Antiviral activity of isobutyl gallate to dengue virus serotype 2In vitro," IOP Conference Series: Earth and Environmental Science, vol. 251,DOI: 10.1088/1755-1315/251/1/012018, 2019.
[178] A. I. Trujillo-Correa, D. C. Quintero-Gil, F. Diaz-Castillo, W. Quiñones, S. M. Robledo, M. Martinez-Gutierrez, "In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting," BMC Complementary and Alternative Medicine, vol. 19 no. 1,DOI: 10.1186/s12906-019-2695-1, 2019.
[179] K. Zandi, B. T. Teoh, S. S. Sam, P. F. Wong, M. R. Mustafa, S. AbuBakar, "Antiviral activity of four types of bioflavonoid against dengue virus type-2," Virology Journal, vol. 8 no. 1,DOI: 10.1186/1743-422X-8-560, 2011.
[180] K. Zandi, B. T. Teoh, S. S. Sam, P. F. Wong, M. R. Mustafa, S. Abubakar, "Novel antiviral activity of baicalein against dengue virus," BMC Complementary and Alternative Medicine, vol. 12 no. 1,DOI: 10.1186/1472-6882-12-214, 2012.
[181] D. Amraiz, N. U. S. S. Zaidi, M. Fatima, "Antiviral evaluation of an Hsp90 inhibitor, gedunin, against dengue virus," Tropical Journal of Pharmaceutical Research, vol. 16 no. 5, pp. 997-1004, DOI: 10.4314/tjpr.v16i5.5, 2017.
[182] D. T. Sathyapalan, A. Padmanabhan, M. Moni, B. Prabhu, P. Prasanna, S. Balachandran, S. P. Trikkur, S. Jose, F. Edathadathil, J. O. Anilkumar, R. Jayaprasad, G. Koramparambil, R. C. Kamath, V. Menon, V. Menon, "Efficacy & safety of Carica papaya leaf extract (CPLE) in severe thrombocytopenia (≤30,000/ μ l) in adult dengue - results of a pilot study," PLoS One, vol. 15 no. 2, pp. e0228699-e0228699, DOI: 10.1371/journal.pone.0228699, 2020.
[183] S. Hettige, "Salutary effects of Carica papaya leaf extract in dengue fever patients a pilot study," Sri Lankan Fam Physician, vol. 29, pp. 17-19, 2008.
[184] N. Sharma, K. P. Mishra, S. Chanda, V. Bhardwaj, H. Tanwar, L. Ganju, B. Kumar, S. B. Singh, "Evaluation of anti-dengue activity of Carica papaya aqueous leaf extract and its role in platelet augmentation," Archives of Virology, vol. 164 no. 4, pp. 1095-1110, DOI: 10.1007/s00705-019-04179-z, 2019.
[185] F. Yunita, E. Hanani, J. Kristianto, "The effect of Carica papaya L leaves extract capsule on platelet count and hematocrit level in dengue fever patient," International Journal of Medicinal and Aromatic Plants, vol. 2, pp. 573-578, 2012.
[186] M. Jain, L. Ganju, A. Katiyal, Y. Padwad, K. P. Mishra, S. Chanda, D. Karan, K. M. S. Yogendra, R. C. Sawhney, "Effect of _Hippophae rhamnoides_ leaf extract against Dengue virus infection in human blood-derived macrophages," Phytomedicine, vol. 15 no. 10, pp. 793-799, DOI: 10.1016/j.phymed.2008.04.017, 2008.
[187] K. Zandi, T. H. Lim, N. A. Rahim, M. H. Shu, B. T. Teoh, S. S. Sam, M. B. Danlami, K. K. Tan, S. Abubakar, "Extract of Scutellaria baicalensis inhibits dengue virus replication," BMC Complementary and Alternative Medicine, vol. 13 no. 1, pp. 91-91, DOI: 10.1186/1472-6882-13-91, 2013.
[188] D. Kumar, G. Kumar, V. Agrawal, "Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.Bark extract and their larvicidal activity against dengue and filariasis vectors," Parasitology Research, vol. 117 no. 2, pp. 377-389, DOI: 10.1007/s00436-017-5711-8, 2018.
[189] U. Muthukumaran, M. Govindarajan, M. Rajeswary, S. L. Hoti, "Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes," Parasitology Research, vol. 114 no. 5, pp. 1817-1827, DOI: 10.1007/s00436-015-4368-4, 2015.
[190] V. Roa-Linares, Y. Miranda-Brand, V. Tangarife-Castaño, R. Ochoa, P. García, M. Castro, L. Betancur-Galvis, A. S. Feliciano, "Anti-herpetic, anti-dengue and antineoplastic activities of simple and heterocycle-fused derivatives of terpenyl-1,4-naphthoquinone and 1,4-anthraquinone," Molecules, vol. 24 no. 7,DOI: 10.3390/molecules24071279, 2019.
[191] H.-T. Huang, C.-C. Lin, T.-C. Kuo, S.-J. Chen, R.-N. Huang, "Phytochemical composition and larvicidal activity of essential oils from herbal plants," Planta, vol. 250 no. 1, pp. 59-68, DOI: 10.1007/s00425-019-03147-w, 2019.
[192] C. Jasso-Miranda, I. Herrera-Camacho, L. K. Flores-Mendoza, F. Dominguez, V. Vallejo-Ruiz, G. G. Sanchez-Burgos, V. Pando-Robles, G. Santos-Lopez, J. Reyes-Leyva, "Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies," Infection and Drug Resistance, vol. 12, pp. 1833-1852, DOI: 10.2147/IDR.S210890, 2019.
[193] D.-L. Wu, H. J. Li, D. Smith, J. Jaratsittisin, X. F. K. T. Xia-Ke-Er, W. Z. Ma, Y. W. Guo, J. Dong, J. Shen, D. P. Yang, W. J. Lan, "Polyketides and alkaloids from the marine-derived fungus dichotomomyces cejpii F31-1 and the antiviral activity of scequinadoline A against dengue virus," Marine Drugs, vol. 16 no. 7,DOI: 10.3390/md16070229, 2018.
[194] A. M. S. Ahmed, R. A. I. Abou-Elkhair, A. M. el-Torky, A. E. A. Hassan, "3-Trifluoromethylpyrazolones derived nucleosides: synthesis and antiviral evaluation," Nucleosides, Nucleotides & Nucleic Acids, vol. 38 no. 8, pp. 590-603, DOI: 10.1080/15257770.2019.1591445, 2019.
[195] S. A. Abdul Ahmad, U. D. Palanisamy, J. J. Khoo, A. Dhanoa, S. Syed Hassan, "Efficacy of geraniin on dengue virus type-2 infected BALB/c mice," Virology Journal, vol. 16 no. 1,DOI: 10.1186/s12985-019-1127-7, 2019.
[196] Z. Sugiyanto, B. Yohan, S. Hadisaputro, E. Dharmana, C. Suharti, K. D. Winarto, F. L. Rahmi, R. T. Sasmono, "Inhibitory effect of alpha-mangostin to dengue virus replication and cytokines expression in human peripheral blood mononuclear cells," Natural Products and Bioprospecting, vol. 9 no. 5, pp. 345-349, DOI: 10.1007/s13659-019-00218-z, 2019.
[197] M. Tarasuk, P. Songprakhon, P. Chimma, P. Sratongno, K. Na-Bangchang, P.-t. Yenchitsomanus, "Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression," Virus Research, vol. 240, pp. 180-189, DOI: 10.1016/j.virusres.2017.08.011, 2017.
[198] M. Bourjot, P. Leyssen, C. Eydoux, J. C. Guillemot, B. Canard, P. Rasoanaivo, F. Guéritte, M. Litaudon, "Chemical constituents of Anacolosa pervilleana and their antiviral activities," Fitoterapia, vol. 83 no. 6, pp. 1076-1080, DOI: 10.1016/j.fitote.2012.05.004, 2012.
[199] J. S. Y. Low, K. X. Wu, K. C. Chen, M. M.-L. Ng, J. J. H. Chu, "Narasin, a novel antiviral compound that blocks dengue virus protein expression," Antiviral Therapy, vol. 16 no. 8, pp. 1203-1218, DOI: 10.3851/IMP1884, 2011.
[200] J. M. Crance, N. Scaramozzino, A. Jouan, D. Garin, "Interferon, ribavirin, 6-azauridine and glycyrrhizin: antiviral compounds active against pathogenic flaviviruses," Antiviral Research, vol. 58 no. 1, pp. 73-79, DOI: 10.1016/S0166-3542(02)00185-7, 2003.
[201] L. A. Baltina, Y. T. Tasi, S. H. Huang, H. C. Lai, L. A. Baltina, S. F. Petrova, M. S. Yunusov, C. W. Lin, "Glycyrrhizic acid derivatives as dengue virus inhibitors," Bioorganic & Medicinal Chemistry Letters, vol. 29 no. 20, article 126645,DOI: 10.1016/j.bmcl.2019.126645, 2019.
[202] M. Zasloff, A. P. Adams, B. Beckerman, A. Campbell, Z. Han, E. Luijten, I. Meza, J. Julander, A. Mishra, W. Qu, J. M. Taylor, S. C. Weaver, G. C. L. Wong, "Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential," Proceedings of the National Academy of Sciences of the United States of America, vol. 108 no. 38, pp. 15978-15983, DOI: 10.1073/pnas.1108558108, 2011.
[203] A. Rahman, S. Muliawan, N. Rashid, Y. Muhamad, "Studies on Quercus Iusitanica Extract on DENV-2 Replication," Dengue Bulletin, vol. 30, pp. 260-269, 2006.
[204] M. Bourjot, P. Leyssen, C. Eydoux, J. C. Guillemot, B. Canard, P. Rasoanaivo, F. Guéritte, M. Litaudon, "Flacourtosides A-F, phenolic glycosides isolated from Flacourtia ramontchi," Journal of Natural Products, vol. 75 no. 4, pp. 752-758, DOI: 10.1021/np300059n, 2012.
[205] D. Laurent, F. Baumann, A. G. Benoit, A. Mortelecqe, N. Nitatpattana, I. Desvignes, C. Debitus, M. Laille, J.-P. Gonzalez, E. Chungue, "Structure-activity relationships of dengue antiviral polycyclic quinones," The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 36 no. 4, pp. 901-905, 2005.
[206] M. Laille, F. Gerald, C. Debitus, "In vitro antiviral activity on dengue virus of marine natural products," Cellular and Molecular Life Sciences, vol. 54 no. 2, pp. 167-1670, DOI: 10.1007/s000180050138, 1998.
[207] G. C. Brandão, E. Kroon, D. Souza, J. Filho, A. Oliveira, "Chemistry and antiviral activity of Arrabidaea pulchra (Bignoniaceae)," Molecules, vol. 18 no. 8, pp. 9919-9932, DOI: 10.3390/molecules18089919, 2013.
[208] P.-M. Allard, P. Leyssen, M. T. Martin, M. Bourjot, V. Dumontet, C. Eydoux, J. C. Guillemot, B. Canard, C. Poullain, F. Guéritte, M. Litaudon, "Antiviral chlorinated daphnane diterpenoid orthoesters from the bark and wood of Trigonostemon cherrieri," Phytochemistry, vol. 84, pp. 160-168, DOI: 10.1016/j.phytochem.2012.07.023, 2012.
[209] X. G. Zhang, P. W. Mason, E. J. Dubovi, X. Xu, N. Bourne, R. W. Renshaw, T. M. Block, A. V. Birk, "Antiviral activity of geneticin against dengue virus," Antiviral Research, vol. 83 no. 1, pp. 21-27, DOI: 10.1016/j.antiviral.2009.02.204, 2009.
[210] K. Whitby, T. C. Pierson, B. Geiss, K. Lane, M. Engle, Y. Zhou, R. W. Doms, M. S. Diamond, "Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo," Journal of Virology, vol. 79 no. 14, pp. 8698-8706, DOI: 10.1128/JVI.79.14.8698-8706.2005, 2005.
[211] F. Jia, G. Zou, J. Fan, Z. Yuan, "Identification of palmatine as an inhibitor of West Nile virus," Archives of Virology, vol. 155 no. 8, pp. 1325-1329, DOI: 10.1007/s00705-010-0702-4, 2010.
[212] J. S. Y. Low, K. C. Chen, K. X. Wu, M. M.-L. Ng, J. J. H. Chu, "Antiviral activity of emetine Dihydrochloride against dengue virus infection," Journal of Antivirals & Antiretrovirals, vol. 1, pp. 62-71, DOI: 10.4172/jaa.1000009, 2009.
[213] L. R. Simões, G. M. Maciel, G. C. Brandão, E. G. Kroon, R. O. Castilho, A. B. Oliveira, "Antiviral activity of Distictella elongata (Vahl) Urb. (Bignoniaceae), a potentially useful source of anti-dengue drugs from the state of Minas Gerais, Brazil," Brazil. Lett Appl Microbiol, vol. 53 no. 6, pp. 602-607, DOI: 10.1111/j.1472-765X.2011.03146.x, 2011.
[214] J. F. Arboleda Alzate, I. A. Rodenhuis-Zybert, J. C. Hernández, J. M. Smit, S. Urcuqui-Inchima, "Human macrophages differentiated in the presence of vitamin D3 restrict dengue virus infection and innate responses by downregulating mannose receptor expression," PLoS Neglected Tropical Diseases, vol. 11 no. 10, article e0005904,DOI: 10.1371/journal.pntd.0005904, 2017.
[215] M. Jadhav, M. Nayak, S. Kumar, A. Venkatesh, S. K. Patel, V. Kumar, S. Sharma, B. Samanta, S. Deb, A. Karak, "Clinical proteomics and cytokine profiling for dengue fever disease severity biomarkers," Omics: a journal of integrative biology, vol. 21 no. 11, pp. 665-677, DOI: 10.1089/omi.2017.0135, 2017.
[216] P. M. Allard, E. T. H. Dau, C. Eydoux, J. C. Guillemot, V. Dumontet, C. Poullain, B. Canard, F. Guéritte, M. Litaudon, "Alkylated flavanones from the bark of Cryptocarya chartacea as dengue virus NS5 polymerase inhibitors," Journal of Natural Products, vol. 74 no. 11, pp. 2446-2453, DOI: 10.1021/np200715v, 2011.
[217] H. Puerta-Guardo, S. I. De la Cruz Hernández, V. H. Rosales, J. E. Ludert, R. M. del Angel, "The 1 α ,25-dihydroxy-vitamin D3 reduces dengue virus infection in human myelomonocyte (U937) and hepatic (Huh-7) cell lines and cytokine production in the infected monocytes," Antiviral Research, vol. 94 no. 1, pp. 57-61, DOI: 10.1016/j.antiviral.2012.02.006, 2012.
[218] T. G. Floore, "Mosquito larval control practices: past and present," Journal of the American Mosquito Control Association, vol. 22 no. 3, pp. 527-533, DOI: 10.2987/8756-971X(2006)22[527:MLCPPA]2.0.CO;2, 2006.
[219] S. A. Abdul Ahmad, U. D. Palanisamy, B. A. Tejo, M. F. Chew, H. W. Tham, S. Syed Hassan, "Geraniin extracted from the rind of Nephelium lappaceum binds to dengue virus type-2 envelope protein and inhibits early stage of virus replication," Virology Journal, vol. 14 no. 1,DOI: 10.1186/s12985-017-0895-1, 2017.
[220] S. Zaman, "Effectiveness of vitamin D in prevention of dengue Haemorrhagic fever and dengue shock syndrome," Journal of Rawalpindi Medical College, vol. 21, pp. 205-207, 2017.
[221] E. Moghaddam, B.-T. Teoh, S.-S. Sam, R. Lani, P. Hassandarvish, Z. Chik, A. Yueh, S. Abubakar, K. Zandi, "Baicalin, a metabolite of baicalein with antiviral activity against dengue virus," Scientific Reports, vol. 4,DOI: 10.1038/srep05452, 2015.
[222] D. M. Giraldo, A. Cardona, S. Urcuqui-Inchima, "High-dose of vitamin D supplement is associated with reduced susceptibility of monocyte-derived macrophages to dengue virus infection and pro-inflammatory cytokine production: an exploratory study," Clinica Chimica Acta, vol. 478, pp. 140-151, DOI: 10.1016/j.cca.2017.12.044, 2018.
[223] M. Raekiansyah, C. C. Buerano, M. A. D. Luz, K. Morita, "Inhibitory effect of the green tea molecule EGCG against dengue virus infection," Archives of Virology, vol. 163 no. 6, pp. 1649-1655, DOI: 10.1007/s00705-018-3769-y, 2018.
[224] Y. B. Cheng, J. C. Lee, I. W. Lo, S. R. Chen, H. C. Hu, Y. H. Wu, Y. C. Wu, F. R. Chang, "Ecdysones from Zoanthus spp with inhibitory activity against dengue virus 2," Bioorganic & Medicinal Chemistry Letters, vol. 26 no. 9, pp. 2344-2348, DOI: 10.1016/j.bmcl.2016.03.029, 2016.
[225] C. Gómez-Calderón, C. Mesa-Castro, S. Robledo, S. Gómez, S. Bolivar-Avila, F. Diaz-Castillo, M. Martínez-Gutierrez, "Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on dengue and chikungunya virus infections," BMC Complementary and Alternative Medicine, vol. 17 no. 1, pp. 57-57, DOI: 10.1186/s12906-017-1562-1, 2017.
[226] M. Raekiansyah, M. Mori, K. Nonaka, M. Agoh, K. Shiomi, A. Matsumoto, K. Morita, "Identification of novel antiviral of fungus-derived brefeldin A against dengue viruses," Tropical Medicine and Health, vol. 45 no. 1,DOI: 10.1186/s41182-017-0072-7, 2017.
[227] T. Hishiki, F. Kato, S. Tajima, K. Toume, M. Umezaki, T. Takasaki, T. Miura, "Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits late step in dengue virus lifecycle," Frontiers in Microbiology, vol. 8, pp. 1674-1674, DOI: 10.3389/fmicb.2017.01674, 2017.
[228] M. Peng, S. Watanabe, K. W. K. Chan, Q. He, Y. Zhao, Z. Zhang, X. Lai, D. Luo, S. G. Vasudevan, G. Li, "Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin," Antiviral Research, vol. 143, pp. 176-185, DOI: 10.1016/j.antiviral.2017.03.026, 2017.
[229] Y.-H. Wu, C. K. Tseng, H. C. Wu, C. K. Wei, C. K. Lin, I. S. Chen, H. S. Chang, J. C. Lee, "Avocado ( Persea americana ) fruit extract ( 2R , 4R )-1,2,4-trihydroxyheptadec-16-yne inhibits dengue virus replication via upregulation of NF- κ B-dependent induction of antiviral interferon responses," Scientific Reports, vol. 9 no. 1,DOI: 10.1038/s41598-018-36714-4, 2019.
[230] J.-C. Lee, F.-R. Chang, S.-R. Chen, Y.-H. Wu, H.-C. Hu, Y.-C. Wu, A. Backlund, Y.-B. Cheng, "Anti-dengue virus constituents from Formosan Zoanthid Palythoa mutuki," Marine Drugs, vol. 14 no. 8,DOI: 10.3390/md14080151, 2016.
[231] S. Bharadwaj, K. E. Lee, V. D. Dwivedi, U. Yadava, A. Panwar, S. J. Lucas, A. Pandey, S. G. Kang, "Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease," Scientific Reports, vol. 9 no. 1, article 19059,DOI: 10.1038/s41598-019-55723-5, 2019.
[232] A. C. Nascimento, L. M. M. Valente, M. Gomes, R. S. Barboza, T. Wolff, R. L. S. Neris, C. M. Figueiredo, I. Assunção-Miranda, "Antiviral activity of _Faramea bahiensis_ leaves on dengue virus type-2 and characterization of a new antiviral flavanone glycoside," Phytochemistry Letters, vol. 19, pp. 220-225, DOI: 10.1016/j.phytol.2017.01.013, 2017.
[233] N. Sharma, K. P. Mishra, L. Ganju, "Salidroside exhibits anti-dengue virus activity by upregulating host innate immune factors," Archives of Virology, vol. 161 no. 12, pp. 3331-3344, DOI: 10.1007/s00705-016-3034-1, 2016.
[234] Y. B. Cheng, Y. T. Chien, J. C. Lee, C. K. Tseng, H. C. Wang, I. W. Lo, Y. H. Wu, S. Y. Wang, Y. C. Wu, F. R. Chang, "Limonoids from the seeds of Swietenia macrophylla with inhibitory activity against dengue virus 2," Journal of Natural Products, vol. 77 no. 11, pp. 2367-2374, DOI: 10.1021/np5002829, 2014.
[235] J. P. Sales de Almeida, L. S. Liberatti, F. E. N. Barros, A. P. Kallaur, M. A. Batisti Lozovoy, B. M. Scavuzzi, C. Panis, E. M. V. Reiche, I. Dichi, A. N. C. Simão, "Profile of oxidative stress markers is dependent on vitamin D levels in patients with chronic hepatitis C," Nutrition, vol. 32 no. 3, pp. 362-367, DOI: 10.1016/j.nut.2015.09.016, 2016.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2021 Muhammad Torequl Islam et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control measures of the dengue virus and its vectors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details









1 Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
2 Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
3 Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
4 Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
5 Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
6 European Institute of Traditional Chinese Studies, 4000-501 Porto, Portugal
7 Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile; Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
8 Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
9 Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
10 Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey; Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
11 Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
12 Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
13 Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
14 Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal; Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal