Abstract

Bioacoustic analyses of animal vocalizations are predominantly accomplished through manual scanning, a highly subjective and time-consuming process. Thus, validated automated analyses are needed that are usable for a variety of animal species and easy to handle by non-programing specialists. This study tested and validated whether DeepSqueak, a user-friendly software, developed for rodent ultrasonic vocalizations, can be generalized to automate the detection/segmentation, clustering and classification of high-frequency/ultrasonic vocalizations of a primate species. Our validation procedure showed that the trained detectors for vocalizations of the gray mouse lemur (Microcebus murinus) can deal with different call types, individual variation and different recording quality. Implementing additional filters drastically reduced noise signals (4225 events) and call fragments (637 events), resulting in 91% correct detections (Ntotal = 3040). Additionally, the detectors could be used to detect the vocalizations of an evolutionary closely related species, the Goodman’s mouse lemur (M. lehilahytsara). An integrated supervised classifier classified 93% of the 2683 calls correctly to the respective call type, and the unsupervised clustering model grouped the calls into clusters matching the published human-made categories. This study shows that DeepSqueak can be successfully utilized to detect, cluster and classify high-frequency/ultrasonic vocalizations of other taxa than rodents, and suggests a validation procedure usable to evaluate further bioacoustics software.

Details

Title
Utilizing DeepSqueak for automatic detection and classification of mammalian vocalizations: a case study on primate vocalizations
Author
Romero-Mujalli, Daniel 1 ; Bergmann Tjard 1 ; Zimmermann Axel 2 ; Scheumann, Marina 1 

 University of Veterinary Medicine Hannover, Institute of Zoology, Hannover, Germany (GRID:grid.412970.9) (ISNI:0000 0001 0126 6191) 
 University of Aalen, Aalen, Germany (GRID:grid.440920.b) (ISNI:0000 0000 9720 0711) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2614491645
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.