Content area

Abstract

Elliptical ultrasonic vibration-assisted milling (EUVAM) is widely used as an efficient processing method for hard-to-machining materials such as titanium alloy, superalloy, and hard-brittle materials. To uncover the mechanism of the intermittent cutting characteristics in EUVAM, the tool-workpiece contact rate model is developed by combining with the kinematic relationship between the tool edge and the workpiece in the process. According to the analysis of the contact rate model, the phenomenon that the contact rate increases rapidly with the time-varying tooth position angle in one-dimensional ultrasonic vibration assisted milling can be improved in EUVAM. In addition, considering the variation of window function and undeformed cutting thickness, a force model is established. And the experiment of EUVAM is performed to verify the model of ultrasonic milling force, and the influence of process parameters (amplitude, cutting speed, feed rate and cutting depth) on ultrasonic milling force is also analyzed.

Details

Title
Investigation of tool-workpiece contact rate and milling force in elliptical ultrasonic vibration-assisted milling
Author
Li Zongyuan 1 ; Zhu, Lida 1 ; Yang, Zhichao 1 ; Ma, Jian 2 ; Cao Wenbin 2 

 Northeastern University, School of Mechanical Engineering and Automation, Shenyang, China (GRID:grid.412252.2) (ISNI:0000 0004 0368 6968) 
 Shanxi Aerospace Qinghua Equipment Co. Ltd, Changzhi, China (GRID:grid.412252.2) 
Pages
585-601
Publication year
2022
Publication date
Jan 2022
Publisher
Springer Nature B.V.
ISSN
02683768
e-ISSN
14333015
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2616136733
Copyright
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.