Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A Raised Safety Platform (RSP) is a relatively new physical road safety intervention at major intersections. They aim to enhance road user safety by reducing vehicle speeds at intersections using an acute vertical deflection to the vehicle path. This study measured the change in speed at selected high-volume intersections treated with an RSP. It was a 12-month study based on a controlled before-and-after-treatment design, with speed and other measures assessed at six treated and five control intersections. Statistically significant and meaningful reductions in speeds were observed given the treatment and adjusted for the control group. A 15.6% reduction in the central tendency of speed was found overall. The odds of a vehicle exceeding nominal Safe System speeds of 30 km/h, 40 km/h, and 50 km/h also reduced markedly, with greater reductions observed at the higher speed thresholds (46%, 69%, and 80%, respectively). The change in speed corresponded to an estimated aggregate-level injurious crash-reduction benefit of around 26% and a reduction in the likelihood of a serious injury given a crash of between 38% to 57% depending on the crash type. It was concluded that RSP is an effective Safe System treatment to reduce speeds at major intersections to levels similar that at roundabouts. The results suggest that well designed RSPs at signalised intersections are an effective and sustainable Safe System treatment.

Details

Title
Evaluation of Raised Safety Platforms (RSP) On-Road Safety Performance
Author
Lawrence, Brendan 1 ; Fildes, Brian 1 ; Cairney, Peter 2 ; Davy, Stephanie 2 ; Sobhani, Amir 3 

 Monash University Accident Research Centre, Clayton, VIC 3800, Australia; [email protected] 
 ARRB Transport, Port Melbourne, VIC 3207, Australia; [email protected] (P.C.); [email protected] (S.D.) 
 Safer Roads, Department of Transport, Sunshine, VIC 3020, Australia 
First page
138
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618268662
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.