It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Short hydrogen bonds (SHBs), whose donor and acceptor heteroatoms lie within 2.7 Å, exhibit prominent quantum mechanical characters and are connected to a wide range of essential biomolecular processes. However, exact determination of the geometry and functional roles of SHBs requires a protein to be at atomic resolution. In this work, we analyze 1260 high-resolution peptide and protein structures from the Protein Data Bank and develop a boosting based machine learning model to predict the formation of SHBs between amino acids. This model, which we name as machine learning assisted prediction of short hydrogen bonds (MAPSHB), takes into account 21 structural, chemical and sequence features and their interaction effects and effectively categorizes each hydrogen bond in a protein to a short or normal hydrogen bond. The MAPSHB model reveals that the type of the donor amino acid plays a major role in determining the class of a hydrogen bond and that the side chain Tyr-Asp pair demonstrates a significant probability of forming a SHB. Combining electronic structure calculations and energy decomposition analysis, we elucidate how the interplay of competing intermolecular interactions stabilizes the Tyr-Asp SHBs more than other commonly observed combinations of amino acid side chains. The MAPSHB model, which is freely available on our web server, allows one to accurately and efficiently predict the presence of SHBs given a protein structure with moderate or low resolution and will facilitate the experimental and computational refinement of protein structures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Rutgers University, Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Piscataway, USA (GRID:grid.430387.b) (ISNI:0000 0004 1936 8796)
2 Rutgers University, Department of Statistics, Institute for Quantitative Biomedicine, Piscataway, USA (GRID:grid.430387.b) (ISNI:0000 0004 1936 8796)