Abstract

High-performance electromagnetic wave absorption and electromagnetic interference (EMI) shielding materials with multifunctional characters have attracted extensive scientific and technological interest, but they remain a huge challenge. Here, we reported an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti3C2Tx/carbon nanotubes/Co nanoparticles (Ti3C2Tx/CNTs/Co) nanocomposites with an excellent electromagnetic wave absorption, EMI shielding efficiency, flexibility, hydrophobicity, and photothermal conversion performance. As expected, a strong reflection loss of -85.8 dB and an ultrathin thickness of 1.4 mm were achieved. Meanwhile, the high EMI shielding efficiency reached 110.1 dB. The excellent electromagnetic wave absorption and shielding performances were originated from the charge carriers, electric/magnetic dipole polarization, interfacial polarization, natural resonance, and multiple internal reflections. Moreover, a thin layer of polydimethylsiloxane rendered the hydrophilic hierarchical Ti3C2Tx/CNTs/Co hydrophobic, which can prevent the degradation/oxidation of the MXene in high humidity condition. Interestingly, the Ti3C2Tx/CNTs/Co film exhibited a remarkable photothermal conversion performance with high thermal cycle stability and tenability. Thus, the multifunctional Ti3C2Tx/CNTs/Co nanocomposites possessing a unique blend of outstanding electromagnetic wave absorption and EMI shielding, light-driven heating performance, and flexible water-resistant features were highly promising for the next-generation intelligent electromagnetic attenuation system.

Highlights

  • The 2D/1D/0D Ti3C2Tx/carbon nanotubes/Co nanocomposite is successfully synthesized via an electrostatic assembly.

  • Nanocomposites exhibit an excellent electromagnetic wave absorption and a remarkable electromagnetic interference shielding efficiency.

  • The flexible, waterproof, and photothermal conversion performances are achieved.

Details

Title
Flexible and Waterproof 2D/1D/0D Construction of MXene-Based Nanocomposites for Electromagnetic Wave Absorption, EMI Shielding, and Photothermal Conversion
Author
Xiang Zhen 1 ; Shi Yuyang 1 ; Zhu, Xiaojie 1 ; Cai Lei 1 ; Lu, Wei 1 

 Tongji University, Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Shanghai, People’s Republic of China (GRID:grid.24516.34) (ISNI:0000000123704535) 
Publication year
2021
Publication date
Jan 2021
Publisher
Springer Nature B.V.
ISSN
23116706
e-ISSN
21505551
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2619579243
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.