It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Napier grass biomass can be hydrolyzed mainly containing glucose and xylose after alkaline pretreatment and enzymatic hydrolysis. This biomass can be fermented using Actinobacillus succinogenes to produce succinic acid. The yield of succinic acid was 0.58 g/g. Because metabolizing xylose could produce more acetic acid, this yield of succinic acid was lower than that achieved using glucose as the sole carbon source.
Results
The addition of glycerol as a fermentation substrate to Napier grass hydrolysate increased the reducing power of the hydrolysate, which not only increased the production of succinic acid but also reduced the formation of undesirable acetic acid in bacterial cells. At a hydrolysate:glycerol ratio of 10:1, the succinic acid yield reached 0.65 g/g. The succinic acid yield increased to 0.88 g/g when a 1:1 ratio of hydrolysate:glycerol was used. For the recovery of succinic acid from the fermentation broth, an outside-in module of an ultrafiltration membrane was used to remove bacterial cells. Air sparging at the feed side with a flow rate of 3 L/min increased the filtration rate. When the air flow rate was increased from 0 to 3 L/min, the average filtration rate increased from 25.0 to 45.7 mL/min, which corresponds to an increase of 82.8%. The clarified fermentation broth was then electrodialized to separate succinate from other contaminated ions. After electrodialysis, the acid products were concentrated through water removal, decolorized through treatment with activated carbon, and precipitated to obtain a purified product.
Conclusions
The yield of succinic acid was increased by adding glycerol to the hydrolysate of Napier grass. The downstream processing consisting of ultrafiltration membrane separation and single-stage electrodialysis was effective for product separation and purification. An overall recovery yield of 74.7% ± 4.5% and a purity of 99.4% ± 0.1% were achieved for succinic acid.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer