Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Liquid crystal (LC) micro-droplet arrays are elegant systems that have a range of applications, such as chemical and biological sensing, due to a sensitivity to changes in surface properties and strong optical activity. In this work, we utilize self-assembled monolayers (SAMs) to chemically micro-pattern surfaces with preferred regions for LC occupation. Exploiting discontinuous dewetting, dragging a drop of fluid over the patterned surfaces demonstrates a novel, high-yield method of confining LC in chemically defined regions. The broad applicability of this method is demonstrated by varying the size and LC phase of the droplets. Although the optical textures of the droplets are dictated by topological constraints, the additional SAM interface is shown to lock in inhomogeneous alignment. The surface effects are highly dependent on size, where larger droplets exhibit asymmetric director configurations in nematic droplets and highly knotted structures in cholesteric droplets.

Details

Title
Self-Localized Liquid Crystal Micro-Droplet Arrays on Chemically Patterned Surfaces
Author
Kołacz, Jakub 1 ; Qi-Huo, Wei 2   VIAFID ORCID Logo 

 Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44240, USA; Center for Bio/Molecular Science and Engineering, US Naval Research Lab, Washington, DC 20375, USA 
 Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44240, USA; Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen 518055, China 
First page
13
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621280576
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.