Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Here, we determined the kinetic parameters of SO2 adsorption on unburned carbons from lignite fly ash and activated carbons based on hard coal dust. The model studies were performed using the linear and non-linear regression method for the following models: pseudo first and second order, intraparticle diffusion, and chemisorption on a heterogeneous surface. The quality of the fitting of a given model to empirical data was assessed based on: R2, R, Δq, SSE, ARE, χ2, HYBRID, MPSD, EABS, and SNE. It was clearly shown that the linear regression more accurately reflects the behaviour of the adsorption system, which is consistent with the first-order kinetic reaction—for activated carbons (SO2 + Ar) or chemisorption on a heterogeneous surface—for unburned carbons (SO2 + Ar and SO2 + Ar + H2O(g) + O2) and activated carbons (SO2 + Ar + H2O(g) + O2). Importantly, usually, each of the approaches (linear/non-linear) indicated a different mechanism of the studied phenomenon. A certain universality of the χ2 and HYBRID functions has been proved, the minimization of which repeatedly led to the lowest SNE values for the indicated models. Fitting data by any of the non-linear equations based on the R or R2 functions only cannot be treated as evidence/prerequisite of the existence of a given adsorption mechanism.

Details

Title
Linear and Non-Linear Regression Analysis for the Adsorption Kinetics of SO2 in a Fixed Carbon Bed Reactor—A Case Study
Author
Kisiela-Czajka, Anna M 1   VIAFID ORCID Logo  ; Dziejarski, Bartosz 2   VIAFID ORCID Logo 

 Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland 
 Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; [email protected] 
First page
633
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621286416
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.